<section-header><text>

Részletes reakciómechanizmusok:					
	sok reakciólépés és so	ok paraméter			
hidrogén égése 30 reakciólépés földgáz égése 300 reakciólépés benzin égése 3000 reakciólépés Diesel-olaj égése 15000 reakciólépés					
Egy vázlatos 12-lépé	éses hidrogén égési mechar	nizmus:			
1 2 3 4 5 6 7 8 9 10 11 12	$\begin{split} H_2 + O_2 &\rightarrow .H + .HO_2 \\ .H + O_2 &\rightarrow .OH + :O \\ .OH + H_2 &\rightarrow .OH + :O \\ :O + H_2 &\rightarrow .OH + .H \\ .H + O_2 + M &\rightarrow .HO_2 + M \\ .H &\rightarrow fal \\ :O &\rightarrow fal \\ .OH &\rightarrow fal \\ .HO_2 + H_2 &\rightarrow .H + H_2O_2 \\ 2 .HO_2 &\rightarrow H_2O_2 + O_2 \\ H_2O_2 + M &\rightarrow 2 .OH + M \\ .HO_2 &\rightarrow fal \end{split}$	$ \begin{array}{l} k_1(T,p) \\ k_2(T,p) \\ k_3(T,p) \\ k_4(T,p) \\ k_5(T,p) \\ k_6(T,p) \\ k_7(T,p) \\ k_8(T,p) \\ k_9(T,p) \\ k_{10}(T,p) \\ k_{11}(T,p) \\ k_{12}(T,p) \end{array} $			
k(T, p)	hőmérsékletfüggés megada nyomásfüggés megadása:	ása: 3-paraméteres Arrhenius-egyenlet további akár 7 paraméter			
További paraméterek anyagonként: termodinamikai adatok, diffúzió, viszkozitás					

Lamináris lángsebesség mérése 4. ikerláng módszer counterflow twin-flame

Két, szembenálló szimmetrikus égőfej

belső csőből előkevert

tüzelőanyag/levegő elegy áramlik meggyújtva előkevert láng

külső koncentrikus gyűrű: nitrogénáram, elzárja a levegőtől

csak a másik lánggal érintkezik: nincsen hővesztesség és gyökvesztesség

C.M. Vagelopoulos, F.N. Egolfopoulos, C.K. Law: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, *Proc. Combust. Inst.*, **25**,1341-1347(1994) http://www.forbrf.lth.se/english/research/combustion_chemistry/facilities/counterflow_burner_rig/

Jólkevert reaktor (PSR)
perfectly stirred reactorgázsugarakkal kevert reaktor
jet stirred reactoraz üveggömböt termosztált térbe tesszük
belevezetjük
a tüzelőanyagot és a levegőta fúvókákból kijövő gázsugarak keverik az elegyet
a gömbön belül homogén gázelegya kijövő gáz összetételét analizálják
(p. FT-IR, GC)

csőreaktor + koncentrációmérés tubular reactor , plug flow reactor

üveg vagy kvarccső kívülről egyenletesen fűtve

dugószerű lassú áramlással beküldjük a gázelegyet

a kijövő gáz összetételét analizálják (pl. FT-IR, GC)

lökéshullám-cső + koncentrációmérés

lökéshullám-kísérlet

mérik a lökéshullám sebességét (egy sor nyomásmérővel a cső hosszában) megállapítják az elreagált gáz hőmérsékletét és nyomását.

az elreagált gázelegy összetételét analizálják (pl. FT-IR, GC)

Gázreakciók sebességi együtthatójának mérése					
A gázelegyekber	n vannak				
molekulák:	Α	kis real	ktivitású, gyakran nagy koncentráció		
gyökök:	В.	nagy re	eaktivitású, gyakran kis koncentráció		
A+A reakciók:	nagyon	lassúak			
A+B. reakciók:	gyorsak	ζ.			
B.+B. reakciók:	gyorsak	(<mark>csak</mark> h	a a koncentrációk elég nagyok)		
A leggyakoribb m	érés: A+E	3. és B.+	B. reakciók vizsgálata		
PI. sztöchiometrik	us H ₂ -lev	vegő eleg	<u>ay robbanása</u>		
A reakcióelegyben van 4 molekula (H_2 , O_2 , H_2O , H_2O_2) és					
4 gyök (.H :O .OH .HO ₂);					
28 reakciólépés fontos:					
A+A tipusu reakcio: 3 db (lanckezdo reakciok) fordított irányban ezek is gyök-gyök reakciók!					
A+B típusú reakció: 11 db (láncfolvtató reakciók)					
B.+B. típusú reakció: 14 db (nagy része lánczáró reakció)					
B.+B. TIPUSU reakcio: 14 db (nagy resze lanczaro reakcio)					

Lézerek felhasználása gyökkoncentrációk mérésére: Lézer-indukálta fluoreszcencia LIF laser induced fluorescence

Festéklézerrel a gyök gerjesztéséhez szükséges hullámhosszú fényt bocsátják ki.

Azt a fényt mérjük, amit a molekula alapállapotba visszatéréskor bocsát ki. A mért fény erőssége arányos a gyök koncentrációjával.

⇒ gyökkoncentráció mérése

Jellemzői:

- nagyon sok gyökre alkalmazható
- drága: festéklézer és azt meghajtó lézer kell + vezérlő elektronika
- kis szórású, kiváló jel

14. tétel. Direkt mérések 2: Lassú átáramlásos reaktor impulzus fotolízissel és lézer-indukálta fluoreszcencia-detektálással

Az alapeset:

LP-LIF készülék részei, működése. A mérés bemutatása egy adott reakcióra, mérés pszeudo-elsőrendű körülményeknél, LP-LIF módszer jellemzői.

LP-LIF módszer jellemzői			
	jellemző	maximális	
hőmérséklet-tartomány	300-500 K	200 K - 1000 K (-73°C - 730°C)	
nyomás-tartomány:	10-760 torr	3 torr - 20 atm	
előnyei:			
 megfelelő hullámhosszú lé 	zerfény +		
 megfelelő prekurzor: nagy 	on tiszta gyökforrás (pl.	. OH előállítása HNO ₃ -ból)	
minimális mellékreakciók			
 több ezer ismétlés (2-10 Hz frekvenciájú lézervillanás) 			
(lassú átöblítés módszere: mindig friss reaktánsok)			
• ~10% pontossággal mérhető a k (1 σ)			
hátrányai:			
 leginkább csak T= 300-500 	0 K tartományban műkö	dik	
 valós idejű (real time) adatfeldolgozás kell: 			
 1 μs – 1 ms időskála: mindent ide kell behozni 			
 egyes gyökök nehezen tanulmányozhatók (pl. alkilgyökök) 			

További direkt módszerek
gázreakciók sebességi együtthatóinak méréséreAz LP-LIF módszerből lehet kiindulni.
ezt lehet változtatni:különféle módszerek alkalmazása gyökkoncentrációk mérése
lézerindukálta fluoreszcencia (LIF),
rezonancia fluoreszcencia (RF), ARAS
fényadszorpció, tömegspektrometria, szinkrotronsugárzáskülönféle módszerek gyökök keltése gázelegyben
hagyományos villanófény fotolízis, lézervillanófény-fotolízis (LP)
mikrohullámú generátor (discharge flow)
lökéshullám-csőben magas hőmérséklet elérése

lézer-indukálta fluoreszcencia (LIF)

rezonancia fluoreszcencia (RF),

atomabszorpciós rezonancia fluoreszcencia (ARAS),

fényabszorpció,

tömegspektrometria,

szinkrotronsugárzás+MS (SVUV-PIMS).

Lézerek felhasználása gyökkoncentrációk mérésére: Lézer-indukálta fluoreszcencia LIF laser induced fluorescence

Festéklézerrel a gyök gerjesztéséhez szükséges hullámhosszú fényt bocsátják ki.

Azt a fényt mérjük, amit a molekula alapállapotba visszatéréskor bocsát ki. A mért fény erőssége arányos a gyök koncentrációjával.

⇒ gyökkoncentráció mérése

Jellemzői:

- nagyon sok gyökre alkalmazható
- drága: festéklézer és azt meghajtó lézer kell + vezérlő elektronika
- kis szórású, kiváló jel

Rezonancia fluoreszcencia RF

resonance fluorescence

A gyökdetektáláshoz szükséges fény forrása:

a megfelelő molekula (pl. H₂O, H₂, NH₃, Br₂) mikrohullámú kisülésben felbomlik és a gerjesztett gyök fény kisugárzásával alapállapotba kerül.

Jellemzői:

- folytonosan sugározza a fényt, de kis fluktuációval
- néhány gyök esetén alkalmazható csak: OH, H, NH, Br
- egyszerű és olcsó
- nagyobb a jel szórása, mint a LIF esetén

Lézervillanás-fotolízis

Sok olyan molekula van, amely elbomlik UV fény hatására és gyökök keletkeznek a bomlás során: pl. $CH_3COCH_3 \rightarrow 2.CH_3 + CO$

UV lézervillanás (excimer-lézer vagy Nd-YAG + 2x frekvenciaduplázás)

jellemző villanási idő: 1 ns (10-9 s)

minimális vizsgálható időtartomány: 100 ns

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{Gyors áramlásos kísérlet:}\\ \mbox{két kémiai kinetikai rendszer} \end{array} \\ \mbox{Az eredeti gyök előállítása kisülésben:} \\ \mbox{A másodlagos gyök előállítása:} \\ \mbox{A vizsgált reakció:} \end{array} \\ \begin{array}{c} \mbox{H + NO}_2 \rightarrow 0 \mbox{H + NO} \\ \mbox{OH + C}_5 \mbox{H}_{12} \rightarrow . \mbox{C}_5 \mbox{H}_{11} \mbox{H}_2 \mbox{O} \end{array} \\ \mbox{A vizsgált reakció:} \end{array} \\ \begin{array}{c} \mbox{OH + C}_5 \mbox{H}_{12} \rightarrow . \mbox{C}_5 \mbox{H}_{11} \mbox{H}_2 \mbox{O} \end{array} \\ \mbox{A vizsgált reakció:} \end{array} \\ \mbox{A vizsgált reakciók:} \end{array} \\ \begin{array}{c} \mbox{Cl}_2 \rightarrow 2 \mbox{Cl} \mbox{Cl} \mbox{OH \mbox{-}} \mbox{Cl}_2 \mbox{H}_2 \mbox{OH \mbox{-}} \mbox{Cl}_2 \mbox{-} \mbox{Cl}_2 \mbox{OH \mbox{-}} \mbox{Cl}_2 \mbox{H}_2 \mbox{OH \mbox{-}} \mbox{Cl}_2 \mbox{H}_2 \mbox{-} \mbox{-} \mbox{Cl}_2 \mbox{H}_2 \mbox{-} \mbox{-} \mbox{-} \mbox{Cl}_2 \mbox{H}_2 \mbox{-} \mbox{Cl}_2 \mbox{H}_2 \mbox{-} \mbox{-} \mbox{Cl}_2 \mbox{H}_2 \mbox{-} \mbox{-} \mbox{-} \mbox{Cl}_2 \mbox{H}_2 \mbox{-} \m$

Gyors áramlásos kísérlet: előnyök és hátrányok
jellemző hőmérséklet-tartomány: 300 K – 500 K (maximális: 200 K – 1000 K) úgy mint a villanófény fotolízis módszereknél keveredési idő sokkal kisebb legyen, mint a reakció lejátszódási ideje kb. hasonló sebességű reakciók vizsgálhatók,mint az LP-LIF-el
 + <u>előnyei:</u> a rendszer stacionárius: egyszerű, lassú elektronika elég MS alkalmazható gyöktitrálás: többfajta gyök állítható elő tisztán, mint fényvillanással
 <u>hátrányai:</u> csak a p = 1-10 torr nyomástartományban használható nagy nyomás → túl sok gáz fogyna → csak kis nyomáson van dugóáramlás (plug flow) falreakciók lehetségesek védekezés: a fal érlelése reakcióval (ageing) Teflon bevonat, a csőátmérő változtatása kissé nagyobb a hibája mint az LP-LIF-nek

Direkt módszerek összefoglalása

Olyan kísérleti körülményeket teremtünk, hogy egyetlen elemi reakció sebességi együtthatóját lehessen meghatározni.

Ez a reakció mindig gyök-molekula vagy gyök-gyök reakció.

Kell egy-egy módszert választani

1) gyökök előállítására (homogén reakcióelegy, legyen jól reprodukálható)

2) gyökkoncentrációk mérésére.

A kétféle módszer szabadon komkbinálható!

különféle módszerek alkalmazása gyökkoncentrációk mérése

lézerindukálta fluoreszcencia (LIF), rezonancia fluoreszcencia (RF), ARAS fényabszorpció, tömegspektrometria, szinkrotronsugárzás (SVUV-PIMS)

különféle módszerek gyökök keltése gázelegyben

hagyományos villanófény fotolízis, lézervillanófény-fotolízis (LP) mikrohullámú generátor (discharge flow), lökéshullám-cső

 $\begin{aligned} & \textbf{T\"obbcsatornás reakciók 3.} \\ & \underline{Valasz:} \text{ kétcsatornás reakció esetén:} \\ & A \to P \quad v_a = k_a[A]; \quad A \to Q \quad v_b = k_b[A]; \\ & \frac{d[A]}{dt} = -(k_a + k_b)[A]; \quad \frac{d[P]}{dt} = k_a[A]; \frac{d[Q]}{dt} = k_b[A]; \\ & [A]_0 = [A]_0; \quad [P]_0 = 0; \quad [Q]_0 = 0 \end{aligned}$ $\begin{aligned} & \textbf{Analitikus megoldás:} \\ & [A] = [A]_0 e^{-(k_a + k_b)t}; \quad [P] = \frac{k_a[A]_0}{k_a + k_b} (1 - e^{-(k_a + k_b)t}); \quad [Q] = \frac{k_b[A]_0}{k_a + k_b} (1 - e^{-(k_a + k_b)t}). \end{aligned}$ $\begin{aligned} & [P] \text{ relatív megváltozása:} \\ & \frac{[P](t_2)}{[P](t_1)} = \frac{1 - e^{-(k_a + k_b)t_1}}{1 - e^{-(k_a + k_b)t_1}} & \text{Tehát [P] relatív megváltozása} \\ & \text{csak (ka+kb)-tól függ, nem függ külön ka-tól ! ! !} \end{aligned}$

A kinet	ikai adatok forrása
kinetikai adatok →	tudományos közlemények
mérése és számítása	journal publications
adatgyűjtés compilation	→ könyvek, adatbázisok books, data bases, e.g. NIST database www.nist.gov
adatkiértékelés evaluation	→ review cikkekben
cikkek újraértékelése és	ajánlott paraméterek
összehasonlítása	evaluated/recommended data

NIST adat	bázisok 2.		
NIST Chemical Kinetics Database	11.700 gázfázisú reakció 38.000 reakcióadat 12.000 feldolgozott cikk		
Egy másik hasznos Web oldal: Webbook (http://webbook.nist.gov	/)		
Termokémiai adatok 7000 veg	yületre		
Termokémiai adatok 8000 reakcióra			
16.000 vegyület IR spektruma			
 15.000 vegyület tömegspektruma 			
 1.600 vegyület UV/Vis spektru 	ma		
 4500 vegyület vibrációs spektruma 			
 16.000 vegyület ionenergetika 	-adata		

		Koncentrációegységek 1.
$c_i = \frac{n_i}{V}$	molaritás JÓ: ROSSZ:	molar concentration [mol/dm³] a vegyészek kedvence reakciókinetikai sebességi egyenletek mólarány látszik belőle gáz melegszik→ c _i változik akkor is, ha nincs kémiai reakció
$x_i = \frac{n_i}{n}$	móltört JÓ: ROSSZ:	mole fraction a vegyészek másik kedvence mólarány látszik belőle inert gáz melegszik→ móltört nem változik reakciókinetikai sebességi egyenletekben közvetlenül nem használható

CHEMKIN szimulációs programok www.reactiondesign.com				
$CHEMKIN \to CHEMKIN \operatorname{-II}$	$I \rightarrow CHEMKIN 3 \rightarrow CHEMKIN 4 \rightarrow CHEMKIN PRO$			
CHEMKIN (1975–) CHEMKIN -II (1986–) CHEMKIN 3 (1996–) CHEMKIN 4 (2004–)	hadititok hadititok, majd freeware drága kereskedelmi szoftver drága kereskedelmi szoftver			
Szimulációs programok, p	ol:			
SENKIN 1 PREMIX I SHOCK I	térben homogén reakciók lamináris előkevert lángok lökéshullám-cső szimulációja			
SENKIN lehetőségek:				
adiabatikus rendszer állandó <i>p</i> adiabatikus rendszer állandó <i>V</i> adiabatikus rendszer <i>V (t)</i> függvénnyel zárt rendszer állandó <i>p</i> , <i>T</i> zárt rendszer állandó <i>V</i> , <i>T</i> zárt rendszer <i>p(t) és T(t)</i> függvénnyel				

Mechanizr	nus CHEMK		formátum	han (2
MCCHUHZI			lonnatani	barr	
REACTIONS MOLES KJOU	JLES/MOLE			0.67	
H2+O	=> OH+H		5.120E+04	2.67	26.27
OH+H	=> H2+0		3.55-11.00	9 69	10.95
H2+OH	=> H2O+H	Δ n	F Arrhoniu	e-nara	méterek
H20+H	=> H2+0H	<i>, , , ,</i>		s para	meteren
	= HOZTH		2.1006+18	80	.00
N2/0.6// 02/0.4/ H20/0)./ AR/0.28/		1 1500.00	1 20	011 41
HOZ	=> (1/1,,M		1.1596+20	-1.26	211.41
harmadiktost ütköz	óci paramótor		C 000711F	00	0 7 2
Tiamaukiesi uikoz	esi parametere	ΞN	0.890E+15	.00	-8.73
0211	-> 02+n+n20		3.801E+17	46	202.68
02+H	=> 00+0		9.750E+13	.00	02.11
0000	=> 02+H		1.450E+13	.00	2.94
H202+0	=> OH+HO2		6.620E+11	.00	16.63
OH+HO2	=> H202+0		4.073E+08	. /2	//.51
H2O2+OH	=> H2O+HO2		7.830E+12	.00	5.57
H2O+HO2	=> H2O2+OH		4.7445+11	.45	140.59
H2O2 (+M)	=> 20H (+M)		3.000E+14	.00	202.87
LOW / 3.000E+17	.00 190.40 /	> [k	o Arrhenius-	param	éterei
20H (+M)	=> H2O2 (+M)		7 230F+13	- 37	00
N2/0 A/02/0 A/H20/6	5/AP/0.35/		7.2502115		.00
TOM / 5 5200:10	5/ AR/0.55/				
TROE / 1.0000	1.00 1.00	10	40.00 /		
Troe-paramé	éterek a nyomá	ásfüg	ggés leírásá	ra	

19. tétel: Reagáló áramlások és lángok mennyiségi leírása

Reagáló áramlások.

Az áramlás jellemzői és az jellemzők változásának okai. CFD. Egyszerűsítő feltevések 1D láng leírására. Az általános 1D mérlegegyenlet valamilyen *E* megőrzött változóra.

Az egyes mennyiségek jelentése és dimenziója. A kontinuitási egyenlet. A fluxusok számítása.

Frank-Kamenyeckij egyszerűsítő feltevései. A kétegyenletes leírás és átalakítása egyetlen differenciálegyenletté. A Lewis-szám. A lángsebesség függése a diffúziós együtthatótól és a kémiai reakció sebességétől.

Reagáló áramlások reactive flow

A reakciókinetika előadások egyik első mondata: Tételezzük fel, hogy a rendszerünk térben homogén!

Való világ: (3D) térben inhomogén rendszer + kémiai reakciók

Az alábbi jellemzők (properties) térben és időben változnak:

nyomás psűrűség ρ hőmérséklet Táramlási sebesség <u>v</u>=(v₁, v₂, v₃) az anyagok koncentrációja <u>c</u>=(c₁,...,c_n)

Az á	Italános 1D m "E" meg	nérlegeg Jőrzött v	yenle áltozo	et valamilyen óra
	$\frac{\partial W}{\partial t} +$	$\frac{\partial}{\partial} \frac{J}{z}$	— =	Q termelés/fogyasztás
E a ma z térba t idő W az E J az E Q az E	egőrzött változó eli koordináta : sűrűsége densit : fluxusa flux, flu : forrása source/	ty x density ⁄sink		dimenzió [e] [hosszúság] [idő] [e/térfogat] [e/(felület*idő)] [e/(térfogat*idő)]

2.	A megőrzött változó: <u>az i-edik anyag m_i tömege</u> $\frac{\partial W}{\partial t} + \frac{\partial J}{\partial z} = Q$
и	ρ_i az i-edik anyag ρ_i parciális sűrűsége [kg/m ³] ahol m_i az i-edik anyag tömege
J	w_i az i-edik anyag tomegtorije parciális sűrűség × áramlási sebesség
	$v_i = v_i p_i v_i$ [regim s] ahol v_i az i-edik anyag mozgási sebessége
C	$r_i = M_i \left(\frac{\partial c_i}{\partial t}\right)_{reakcio}$
	M_i az i-edik anyagfajta moláris tömege [kg/mol] $\frac{\partial c_i}{\partial t}$ az i-edik anyagfajta moláris kémiai termelési sebessége $\frac{\partial c_i}{\partial t}$ [mol/m ³ s]
	 r_i az i-edik anyagfajta kémiai termelési sebessége tömegegységben [kg/m³s]
l	Mérlegegyenlet az i-edik anyagfajta tömegére: $\frac{\partial(\rho w_i)}{\partial t} + \frac{\partial(\rho w_i v_i)}{\partial z} = r_i$

$$W_{i} \text{ mérlegegyenlet egyszerűsítése}$$
A kiindulási egyenlet:
$$\frac{\partial(\rho w_{i})}{\partial t} + \frac{\partial(\rho w_{i}v_{i})}{\partial z} = r_{i}$$
 $v_{i} = v + V_{i}$
 v_{i} az i-edik anyagfajta tömegközéppontjának sebessége
 v a gázelegy tömegközéppontjának sebessége
 V_{i} az i-edik anyagfajta diffúziósebessége a gázelegy
tömegközéppontjánoz képest
$$\frac{\partial(\rho w_{i})}{\partial t} + \frac{\partial(\rho w_{i}v)}{\partial z} + \frac{\partial(\rho w_{i}V_{i})}{\partial z} = r_{i} \qquad (*)$$
szorzatfüggvény deriváltja:
 $(uv)'=uv'+u'v$ illetve $\frac{\partial(wv)}{\partial x} = u \frac{\partial v}{\partial x} + v \frac{\partial u}{\partial x}$
 $w_{i} \frac{\partial \rho}{\partial t} + \rho \frac{\partial w_{i}}{\partial t} + \rho v \frac{\partial w_{i}}{\partial z} + w_{i} \frac{\partial(\rho v)}{\partial z} + \frac{\partial(\rho w_{i}V_{i})}{\partial z} = r_{i}$
 (1)
 (2)
 (3)

$$w_{i}\frac{\partial\rho}{\partial t} + \rho\frac{\partial w_{i}}{\partial t} + \rho v\frac{\partial w_{i}}{\partial z} + w_{i}\frac{\partial(\rho v)}{\partial z} + \frac{\partial(\rho w_{i}V_{i})}{\partial z} = r_{i}$$
(1)
(2)
(3)

A kontinuitási egyenlet alapján (1)+(2)=0, mert
$$\frac{\partial\rho}{\partial t} + \frac{\partial(\rho v)}{\partial z} = 0$$
(3) egyszerűsített felírása:
$$w_{i}\frac{\partial\rho}{\partial t} + w_{i}\frac{\partial(\rho v)}{\partial z} = 0$$
ahol j_{i} az i-edik anyag diffúziós fluxusa
a gázelegy tömegközéppontjához képest

Az új, egyszerűbb alak:
$$\frac{\partial(\rho w_{i}V_{i})}{\partial z} = \frac{\partial j_{i}}{\partial z}$$

$$\rho\frac{\partial w_{i}}{\partial t} + \rho v\frac{\partial w_{i}}{\partial z} + \frac{\partial j_{i}}{\partial z} = r_{i}$$

 $\frac{\partial W}{\partial t} + \frac{\partial J}{\partial z} = Q$ 3. a megőrzött változó: az elegy h entalpiája térfogategységre jutó entalpia W [J/m³] $\sum \rho_i h_i = \sum \rho w_i h_i$ $\overline{\frac{h_i}{h_i}}$ az i-edik anyag entalpiája ahol W az i-edik anyag tömegtörtje az i-edik anyag parciális sűrűsége ρ_i entalpia fluxus= J = hőtranszport + az anyagtranszporttal vitt entalpia $j_q + \sum_i \rho_i v_i h_i = j_q + \sum_i \rho v_i w_i h_i$ [J/m²s] ahol j_i a hőfluxus: energiatranszport a hőmérsékletgradiens hatására Q 0 (nulla) az energiamegmaradás miatt $\sum_{i} \frac{\partial (\rho w_{i}h_{i})}{\partial t} + \sum_{i} \frac{\partial (\rho v w_{i}h_{i})}{\partial z} + \sum_{i} \frac{\partial (\rho V_{i} w_{i}h_{i})}{\partial z} + \frac{\partial j_{q}}{\partial z} = 0$ A mérlegegyenlet: (1) (2) (3)(4)

$$\sum_{i} \frac{\partial(\rho w_{i}h_{i})}{\partial t} + \sum_{i} \frac{\partial(\rho v w_{i}h_{i})}{\partial z} + \sum_{i} \frac{\partial(\rho V_{i} w_{i}h_{i})}{\partial z} + \frac{\partial j_{q}}{\partial z} = 0$$
(1) (2) (3) (4)
(1)+(2)=
$$\sum_{i} \left(\rho w_{i} \frac{\partial h_{i}}{\partial t} + h_{i} \frac{\partial(\rho w_{i})}{\partial t} \right) + \sum_{i} \left(\rho v w_{i} \frac{\partial h_{i}}{\partial z} + h_{i} \frac{\partial(\rho v w_{i})}{\partial z} \right) =$$
(a) (b) (c) (d)
$$\rho v \sum_{i} w_{i} \frac{\partial h_{i}}{\partial z} + \rho \sum_{i} w_{i} \frac{\partial h_{i}}{\partial t} + \sum_{i} h_{i} \left[\frac{\partial(\rho v w_{i})}{\partial z} + \frac{\partial(\rho w_{i})}{\partial t} \right] =$$
(c) (a) (d) (b)
$$A (*)-ból tudjuk, hogy \qquad \frac{\partial(\rho v w_{i})}{\partial z} + \frac{\partial(\rho w_{i})}{\partial z} + \frac{\partial(\rho w_{i})}{\partial t} = r_{i} - \frac{\partial(\rho w_{i}V_{i})}{\partial z}$$
ezt behelyettesítve:
$$\rho v \sum_{i} w_{i} \frac{\partial h_{i}}{\partial z} + \rho \sum_{i} w_{i} \frac{\partial h_{i}}{\partial t} + \sum_{i} h_{i}r_{i} - \sum_{i} h_{i} \frac{\partial(\rho w_{i}V_{i})}{\partial z}$$

$$\sum_{i} \frac{\partial(\rho w_{i}h_{i})}{\partial t} + \sum_{i} \frac{\partial(\rho v w_{i}h_{i})}{\partial z} + \sum_{i} \frac{\partial(\rho V_{i} w_{i}h_{i})}{\partial z} + \frac{\partial j_{q}}{\partial z} = 0$$
(1)
(2)
(3)
(4)
(1)+(2) átalakítva = $\rho v \sum_{i} w_{i} \frac{\partial h_{i}}{\partial z} + \rho \sum_{i} w_{i} \frac{\partial h_{i}}{\partial t} + \sum_{i} h_{i}r_{i} - \sum_{i} h_{i} \frac{\partial(\rho w_{i}V_{i})}{\partial z}$
(3) átalakítva = $\sum_{i} \frac{\partial(\rho V_{i} w_{i}h_{i})}{\partial z} = \sum_{i} \rho V_{i} w_{i} \frac{\partial h_{i}}{\partial z} + \sum_{i} h_{i} \frac{\partial(\rho V_{i} w_{i})}{\partial z}$
(1)+(2) tagok összege átalakítva + (3). tag átalakítva + (4). tag=
 $\rho v \sum_{i} w_{i} \frac{\partial h_{i}}{\partial z} + \rho \sum_{i} w_{i} \frac{\partial h_{i}}{\partial t} + \sum_{i} h_{i}r_{i} + \sum_{i} j_{i} \frac{\partial h_{i}}{\partial z} + \frac{\partial j_{q}}{\partial z} = 0$

Fluxusok számítása j_q hőfluxusFourier törvénye $j_q = -\lambda \frac{\partial T}{\partial z}$ $[J m^{-2}s^{-1}]$ λ a hővezetőképesség j_q anyagfluxusFick I. törvénye $j_i = -D_i \frac{\partial C_i}{m \partial z} m^{-2}s^{-1}]$ D_i az i-edik anyag diffúziós együtthatójaha a koncentrációt tömegtörtben adjuk meg,
Fick I a következő alakú: $j_i = -D_i \rho \frac{\partial w_i}{\partial z}$

Egyenletrendszer a hőmérsékletre

mérlegegyenlet az entalpiára:

$$\rho v \sum_{i} w_{i} \frac{\partial h_{i}}{\partial z} + \rho \sum_{i} w_{i} \frac{\partial h_{i}}{\partial t} + \sum_{i} h_{i} r_{i} + \sum_{i} j_{i} \frac{\partial h_{i}}{\partial z} + \frac{\partial j_{q}}{\partial z} = 0$$
(1)
(2)
(3)
(4)
(5)

A fluxus számításához a hőmérséklet gradiensére van szükség, ezért a fenti egyenletet átalakítjuk a hőmérséklet számítására.

 $c_p = \sum_i w_i c_{p,i}$

entalpia változás \rightarrow hőmérséklet változás: d $h_i = c_{p,i} dT$

az elegy fajlagos hőkapacitása:

Ezt felhasználva:

(2) (5) (1) (4) (3)

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) - \left(\rho v c_{p} + \sum_{i} j_{i} c_{p,i} \right) \frac{\partial T}{\partial z} - \sum_{i} h_{i} r_{i}$$
időbeni diffúzió áramlás kémia
megváltozás

