

Reaction kinetics basics Characterization of chemical changes with a stoichiometric (overall) equation: • properly indicates the ratio of reactants and products • usually there is no such a real chemical process			
$2 H_2 + O_2 = 2 H_2O$			
$0 = -2 H_2 - 1 O_2 + 2 H_2 O$ $0 = \sum_{j} v_j A_j$	$v_1 = -2$ $v_2 = -1$ $v_3 = +2$	$A_1 = "H_2"$ $A_2 = "O_2"$ $A_3 = "H_2O"$	
V_j stoichiometric coefficient (negative for reactants, positive for products)			
Features: - the order of the species is arbitrary - the stoichiometric coefficients can be $H_2 + \frac{1}{2}O_2 = H_2O$ is also a good over	multiplied with th verall equation	e same real number 4	

Kinetic system of differential equations

law of mass action (Guldberg and Waage, 1865):

$$r_i = k_i \prod_j Y_j^{\nu_{ij}^L}$$

k_i rate coefficient of reaction step *i*

rate of reaction step *i*

r_i

Definition of the kinetic system of differential equations:

$$\frac{\mathrm{d}Y_j}{\mathrm{d}t} = \sum_i \Delta v_{ij} r_i; \quad j = 1, 2, \dots, n$$

7

The kinetic system of differential equations in matrix-vector form:

$$\frac{\mathrm{d}\,\mathbf{Y}}{\mathrm{d}\,t} = \mathbf{v}\,\mathbf{I}$$

<section-header><section-header><text><equation-block><equation-block><text><text><text><text>

$\frac{\mathrm{d}x}{\mathrm{d}t} = -k_1 xy + k_2 ya - 2k_3 x^2 + k_4 xa - 0.5k_5 xz$ calculation of the Jacobian			
$\frac{\mathrm{d} y}{\mathrm{d} t} = -k_1 x y - k_2 y a + k_6 z m$ $\frac{\mathrm{d} z}{\mathrm{d} t} = 2k_4 x a - k_5 x z - 2k_6 z m$	J =	$\left\{\frac{\partial f_i}{\partial y_j}\right\}$	_
$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial x} = -k_1 y - 4k_3 x + k_4 a - 0.5k_5 z$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial y} = -k_1 x + k_2 a$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial z} = -0.5k_5x$	
$\frac{\partial \frac{\mathrm{d}y}{\mathrm{d}t}}{\partial x} = -k_1 y$	$\frac{\partial \frac{\mathrm{d} y}{\partial t}}{\partial y} = -k_1 x - k_2 a$	$\frac{\partial \frac{\mathrm{d} y}{\mathrm{d} t}}{\partial z} = +k_6 m$	
$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial x} = 2k_4 a - k_5 z$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial y} = 0$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial z} = -k_5 x - 2k_6 m$	11

$\frac{\mathrm{d}x}{\mathrm{d}t} = -k_1 xy + k_2 ya - 2k_3 x^2 + k_4 xa - 0.5k_5 xz$			calcu	lation of	matrix F	
	$\frac{dy}{dt} = -k_1 xy - k_2 y$ $\frac{dz}{dt} = 2k_4 xa - k_5 x$	$ka + k_6 zm$ $z - 2k_6 zm$		$\mathbf{F} = \begin{cases} \frac{1}{2} \end{cases}$	$\frac{\partial f_i}{\partial k_j} \bigg\}$	
	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial k_1} = -xy$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial k_2} = ya$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial k_3} = -2x^2$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial k_4} = xa$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial k_5} = -0.5xz$	$\frac{\partial \frac{\mathrm{d}x}{\mathrm{d}t}}{\partial k_6} = 0$
	$\frac{\partial \frac{\mathrm{d}y}{\mathrm{d}t}}{\partial k_1} = -xy$	$\frac{\partial \frac{\mathrm{d} y}{\mathrm{d} t}}{\partial k_2} = -ya$	$\frac{\partial \frac{\mathrm{d} y}{\mathrm{d} t}}{\partial k_3} = 0$	$\frac{\partial \frac{\mathrm{d} y}{\mathrm{d} t}}{\partial k_4} = 0$	$\frac{\partial \frac{\mathrm{d} y}{\mathrm{d} t}}{\partial k_5} = 0$	$\frac{\partial \frac{\mathrm{d} y}{\mathrm{d} t}}{\partial k_6} = zm$
	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial k_1} = 0$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial k_2} = 0$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial k_3} = 0$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial k_4} = 2xa$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial k_5} = -xz$	$\frac{\partial \frac{\mathrm{d}z}{\mathrm{d}t}}{\partial k_6} = -2zm$ 12

Conserved properties	
<mark>Isolated system:</mark> The total internal energy is constant	
Constant volume closed system: the sum of the concentrations is constant, if each the change of the number of moles in each reaction step is zero e.g. for reaction $H_2+CI_2 = 2 HCI$	
Closed system, elementary reactions only: the number of moles of the elements is constant.	
The moles of moieties (e.g. benzene ring) can remain constant	
Example for conserved properties in a C_2H_4 , CH_4 , C_6H_6 mixture: C-atom $\rightarrow 2 [C_2H_4] + 1 [CH_4] + 6 [C_6H_6] = constant$ H-atom $\rightarrow 4 [C_2H_4] + 4 [CH_4] + 6 [C_6H_6] = constant$	
Some linear combinations of the concentrations are constant.	
<i>N</i> conserved property: ⇒ the rank of the stoichiometric matrix is lower by <i>N</i> ⇒ the system can be simulated exactly with (<i>n</i> - <i>N</i>) variables	14

Reaction kinetics simplifying principles

<u>Reaction kinetics simplifying principles</u>: can be used for the simplification of a reaction mechanism (kinetic system of differential equations) in such a way that the obtained reaction mechanism (or system of differential equations) provides an almost identical (say within 1%) solution.

Reaction kinetic simplifying principles:

- · rate determining step
- quasi steady state approximation (QSSA)
- fast pre-equilibrium approximation
- pool component approximation

Pool component approximationIf the concentration of one of the reactants is much higher
than those of the others, then this concentration will not change
significantly during the reaction.This way a second order reaction can be converted to
an equivalent first order reaction by merging the rate coefficient and
the concentration of the pool component. $\frac{d[C]}{dt} = k[A][B] = k'[A]$ where k' = k[B] is constant. \Rightarrow "pseudo first order reaction"Example: "inversion of sucrose"Hydrolysis of sucrose in an acidic solution. The products formed are
optically active and their optical rotation can be determined
by using a polarimeter. The decomposition of sucrose
can be described by a first order decay reaction.

NIST Chemistry WebBook Another important Web source: Webbook (http://webbook.nist.gov/) thermochemical data for over 7000 compounds reaction thermochemistry data for over 8000 reactions. IR spectra for over 16.000 compounds. UV/Vis spectra for over 33.000 compounds. UV/Vis spectra for over 1600 compounds. gas chromatography data for over 27.000 compounds. electronic and vibrational spectra for over 5000 compounds. spectroscopic data for over 16.000 compounds. ion energetics data for over 16.000 compounds. thermophysical property data for 74 fluids.

I raditional way for the development of detailed reaction mechanisms 1. List of elementary reactions is generated	
2. Determination of the rate parameters one-by-one:	
Based on direct measurements Using chemical kinetic databases Calculation/estimation of rate parameters	
 Comparison of the simulation results with the results of indirect measurements. Indirect measurements: time-to-ignition, flame velocity, concentration-time or concentration-distance profiles. 	
No good agreement in most cases	
4. Identification of the most important reactions by sensitivity analysis at the experimental conditions.	
5. Tuning the rate parameters of the most important reactions, till the model reproduces the experimental data.	
Different authors tune different parameters ⇒ different mechanisms	34

Codes for mechanism generation – some examples	
EXGAS (Nancy) includes mechanism generator, kinetic data base and estimation of thermochem parameters wider classes of fuels: heavy alkanes, oxygenated species, biomass fuels	ical
F. Battin-Leclerc, P. A. Glaude, V. Warth, R. Fournet, G. Scacchi, G. M. Côme: Computer tools for modelling the chemical phenomena related to combustion. <i>Chem. Eng. Sci.</i> 55 , 2883-2893 (2000)	
 MAMOX (Milano) automatic generation of mechanisms considering isomers with similar kinetic behaviour as a single lumped species lumping parallel reaction pathways for similar isomers fitting lumped reaction rates to predictions from the full scheme Ranzi, E., Faravelli, T., Gaffuri, P., Sogaro, A.: Low-temperature combustion: Automatic generation primary oxidation reactions and lumping procedures. <i>Combust. Flame</i> 102, 179-192 (1995) 	ı of
KUCRS (University of Tokyo) automatic generation of mechanisms	
A. Miyoshi, KUCRS - Detailed kinetic mechanism generator for versatile fuel components and mixtures, Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2012 , 116–121 (2012)	36

19

	Calculation of element fluxes using KINALC				
с с с	ATOMFLOW Fluxes of elements from species to species are investigated The name(s) of elements are listed after the keyword. Usage: ATOMFLOW <element1> <element2></element2></element1>				
ATOM	IFLOW C H				
=== ATC	MFLOW ====================================	ents from speci	====== es to species		
Net flu	axes of element H		absolute		rel.
1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16	H2 H2 OH H H OH H02 H2 H H02 OH H02 OH H20 OH	=> H2O => H => H2O => OH => H02 => H => OH => OH => H2 => H2O => H2 => H2O => H2 => H2O => H2	6.843E-02 4.584E-02 3.360E-02 2.370E-02 2.302E-02 1.797E-02 1.162E-02 6.346E-03 4.084E-03 3.334E-03 3.334E-03 3.334E-03 1.049E-03 7.891E-04 7.617E-04 7.010E-04	<pre>mole/(cm3 sec) mole/(cm3 sec) m</pre>	1.0000 .6699 .5895 .4910 .3463 .3364 .2626 .1699 .0927 .0597 .0487 .0393 .0153 .0115 .0111 .0102
17 18	H2O2 H2O2	=> H2O => OH	5.367E-04 2.131E-04	<pre>mole/(cm3 sec) mole/(cm3 sec)</pre>	.0078 42 .0031

22

23

Pathways for the consuption/production of a given species Problem: What is the sequence of reactions that leads to the consuption (or production) of a given species? The detailed reaction mechanism is known. Example: What is the sequence of reactions that leads to the consuption of methane in the stratosphere? Answer: $\mathrm{CH}_4 + \mathrm{OH} + \mathrm{O}_2 \rightarrow \mathrm{CH}_3\mathrm{O}_2 + \mathrm{H}_2\mathrm{O}$ $CH_3O_2 + NO + O_2 \rightarrow CH_2O + HO_2 + NO_2$ $CH_2O + h\upsilon \rightarrow CO + H_2$ $\mathrm{NO} + \mathrm{HO}_2 \rightarrow \mathrm{NO}_2 + \mathrm{OH}$ $NO_2 + h\upsilon \rightarrow NO + O$ $O + O_2 \rightarrow O_3$ The global reaction for CH₄ consumption: $CH_4 + 4 O_2 \rightarrow 2 O_3 + H_2O + H_2 + CO$ R. Lehmann: An algorithm for the determination of all significant pathways 54 in chemical reaction systems. J. Atm. Chem. 47, 45-78 (2004)

Initial concentration sensitivitiesinitial concentration sensitivities: the consequence of changing the initial conc.can be calculated with finite differences: $\frac{\partial Y_i}{\partial Y_j(t_1)}(t_2) \approx \frac{\Delta Y_i(t_2)}{\Delta Y_j(t_1)} = \frac{Y_i(t_2) - Y_i(t_2)}{\Delta Y_j(t_1)}$ kinetic system of ODEs: $\frac{d \mathbf{Y}}{dt} = \mathbf{f}(\mathbf{Y}, \mathbf{p})$ $\mathbf{Y}(t_0) = \mathbf{Y}_0$ Differentiating it with respect to $Y_j(t_1)$: $\frac{d}{dt} \frac{\partial \mathbf{g}}{\partial Y_j^0(t_1)} = \mathbf{J} \frac{\partial \mathbf{g}}{\partial Y_j^0(t_1)}$ $\frac{d}{dt} \mathbf{G}(t, t_1) = \frac{\partial \mathbf{f}}{\partial \mathbf{Y}}(t) \mathbf{G}(t, t_1)$ $\mathbf{G}(t_1, t_1) = \mathbf{I}$ the initial value of variable j is changed at time t_1 andthe effect is read at time t_2 $g_{ij}(t, t_1) = \frac{\partial Y_i(t)}{\partial Y_j^0(t_1)}$ $\mathbf{g}_j(t, t_1) = \frac{\partial Y_i(t)}{\partial Y_j^0(t_1)}$ Gene function matrix \mathbf{G}

Calculation of local sensitivity coefficients1 Brute force method (finite difference approximation) $\frac{\partial Y_i}{\partial p_j(t_1)}(t_2) \approx \frac{\Delta Y_i(t_2)}{\Delta p_j(t_1)} = \frac{Y_i(t_2) - Y_i(t_2)}{\Delta p_j(t_1)}$ Δp_j small: large error due to
the representation of numbers
 Δp_j large: large error due to nonlinearity2 Direct method2a. Coupled Direct Method:
coupled solution of the kinetic and sensitivity differential equations: $\frac{dY}{dt} = f(\mathbf{Y}, \mathbf{p})$ $\mathbf{Y}(t_0) = \mathbf{Y}_0$ $\frac{d}{dt} \frac{\partial \mathbf{Y}}{\partial p_j} = \mathbf{J} \frac{\partial \mathbf{Y}}{\partial p_j} + \frac{\partial \mathbf{f}}{\partial p_j}$ $\frac{\partial \mathbf{Y}}{\partial p_j}(t_0) = 0$ The coupled solution is repeated for each parameter:j = 1, 2, ..., mLots of unnecessary calculations.60

Interpretation of local sensitivity coefficients			
$s_{ik} = \frac{\partial Y_i}{\partial p_k}$	(Original) local sensitivity coefficients: the parameter is changed by one unit inspected: the result is changed by how many units [unit of result / unit of parameter]		
Normalized loca	al sensitivity coefficients:		
$\widetilde{s}_{ik} = \frac{p_k}{Y_i} \frac{\partial Y_i}{\partial p_k} = \frac{\partial \ln \theta}{\partial \ln \theta}$	$\frac{n Y_i}{n p_k}$ investigates relative changes How much % change of the result due to 1 % change of the parameter? dimension free		
So far: single effect	e parameter is changed t on a single model result is investigated		
Further inform using principal severa the eff	nation can also be extracted from sensitivity matrix S I component analyis, like the case when al parameters are changed simultaneously, and fect on multiple model results is investigated.		

Fourier Amplitude Sensitivity Test (FAST) method 3 $E(Y_i)$ is the expected value of model result Y_i : $E(Y_i) = \iint ... \int h_i (p_1, p_2, ..., p_N) P(p_1, p_2, ..., p_N) dp_1 dp_2 ... dp_N$ Y_i is the value of function h_i ; P is the joint pdf of parameters pParameter p_j is changed by changing scalar s $p_j(s) = G_j(\sin \omega_j s)$ Function G_j has to be selected to to reproduce the joint probability density of parameters P a_j is the frequency assigned to parameter p_j The frequencies have to be relative primes. If $-\pi < s < \pi$ and $\Delta s = 2\pi/N \implies N$ points are located in the space of parameters; the local density corresponds to the pdf

Fourier Amplitude Sensitivity Test (FAST) method 4

The simulation results are investigated by Fourier analysis:

$$\sigma^{2}(Y_{i}) = 2\sum_{l=1}^{+\infty} \left(A_{il}^{2} + B_{il}^{2}\right)$$

Here $\sigma^2(Y_i)$ is the variance of the result; A_{ii} and B_{ii} are the Fourier coefficients:

$$A_{il} = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y_i(s) \cos(ls) ds, \quad l = 0, 1, \dots$$
$$B_{il} = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y_i(s) \sin(ls) ds, \quad l = 1, 2, \dots$$

When the Fourier coefficients are calculated at frequency ω_j and its overtones, then the partial variance caused by parameter *j* is obtained:

$$\sigma_j^2(Y_i) = 2\sum_{r=1}^{+\infty} \left(A_{i,r\omega_j}^2 + B_{i,r\omega_j}^2 \right)$$

87

Fourier Amplitude Sensitivity Test (FAST) method 5

partial variance:

$$S_{ij} = \frac{\sigma_j^2(Y_i)}{\sigma^2(Y_i)}$$

This is the fraction of the total variance caused by parameter *j*

FAST is a slow algorithm; the total number of required simulations: $N = 1.2 k^{2.5}$

N = 21000 simulations are needed for the investigation of a model having k = 50 parameters

The source of extra information for the same amount of computer time: Unlike in the MC method, the order of simulations is important; patterns are identified in the sequence of simulations

A. Saltelli, R. Bolado: An alternative way to compute Fourier Amplitude Sensitivity Test (FAST) *Comput. Stat. Data Anal.* **26**, 445-460 (1998)

Sensitivity indices 2Variance of Y_i, caused by parameters p_j and p_k together: $V(E(Y_i|p_j, p_k))$ It can be used for the calculation of the second order uncertainty index: $S_{k_j(i)} = \frac{V(E(Y_i|p_k, p_j)) - V(E(Y_i|p_k)) - V(E(Y_i|p_j))}{V(Y_j)}$ This index shows the interaction of parameters p_j and p_k The *n*-th order uncertainty index can be obtained in a similar way.Example: a model has three parameters: a, b, cThe total index: $S_{a(i)}^{tot} + S_{ab(i)} + S_{ac(i)} + S_{abc(i)}$ parameter *j* has no correlations: $S_{j(i)} = S_{j(i)}^{tot} - S_{j(i)}$ 10

Polynomial chaos expansion (PCE)

It is not related to "chaos" in the dynamical systems theory way. It has been used several times in combustion modelling.

M. T. Reagan, H. N. Najm, B. J. Debusschere, O. P. Le Maitre, O. M. Knio, R. G., Ghanem: Spectral stochastic uncertainty quantification in chemical systems. *Combust. Theor. Model.* **8**, 607-632 (2004)

D.A. Sheen, X. You, H. Wang, T. Løvås: Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion. Proc. Combust. Inst. 32, 535-542 (2009)

 x_{i} , x_{j} uncertain Arrhenius parameters *A*, scaled to interval [-1,+1] description of model response $\eta_{i}(\mathbf{x})$ with a second order polynomial:

$$\eta_r(\mathbf{x}) = \eta_{r,0} + \sum_{i=1}^m a_{r,i} x_i + \sum_{i=1}^m \sum_{j \ge i}^m b_{r,i,j} x_i x_j$$

The uncertainty in \mathbf{x} may be expressed as a polynomial expansion of basis random variables $\boldsymbol{\xi}$,

$$\mathbf{x} = \mathbf{x}^{(0)} + \sum_{i=1}^{m} \alpha_{i} \xi_{i} + \sum_{i=1}^{m} \sum_{j \ge i}^{m} \beta_{ij} \xi_{i} \xi_{j} + \dots,$$
93

Polynomial chaos 2

Combining the previous two equations:

$$\eta_r(\xi) = \eta_r(\mathbf{x}^{(0)}) + \sum_{i=1}^m \hat{\alpha}_{r,i}\xi_i + \sum_{i=1}^m \sum_{j\geq i}^m \hat{\beta}_{r,ij}\xi_i\xi_j + \dots,$$

where
$$\hat{\boldsymbol{\alpha}}_r = \frac{1}{2} \mathbf{I}_m \mathbf{a}_r$$
 $\hat{\boldsymbol{\beta}}_r = \frac{1}{4} \mathbf{I}_m^T \mathbf{b}_r \mathbf{I}_m$

 \Rightarrow the overall model prediction is given by its nominal value plus uncertainty contributions from each rate coefficient. The overall output variance may then be represented as the sum over terms involving the coefficients of the equivalent expansion:

$$\sigma_{r}(\xi)^{2} = \sum_{i=1}^{m} \hat{\alpha}^{2}_{r,i} + 2\sum_{i=1}^{m} \hat{\beta}^{2}_{r,ij} + \sum_{i=1}^{m} \sum_{j>i}^{m} \hat{\beta}^{2}_{r,ij}$$

D.A. Sheen, X. You, H. Wang, T. Løvås: Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion. *Proc. Combust. Inst.* **32**, 535-542 (2009)

	local	Morris	MC LHS	sens. index
input variance	✓	✓	✓	✓
input <i>pdf</i>	×	×	\checkmark	✓
output <i>pdf</i>	×	×	\checkmark	×
output variance	✓(linear)	×	\checkmark	✓(biased)
CPU requirement?		2110	3000	16280
Individual contributions	✓ (linear)	✓ (only qualitative)	×	\checkmark
global?	×	(🗸)	✓	✓
info about the non-linearities	×	(only qualitative)	×	 ✓

Active Thermochemical Tables (ATcT) 2
NOTES:
The reason of the name: the original idea was that the tables would be "active": on a Web site adding new measurement data all enthalpies of formation would be recalculated.
It never worked this way: Dr. Ruscic is continously adding new measurements and sometimes publishes $\Delta_r H^{\theta}$ values.
Please observe the similarity and difference between ATcT and the optimization of kinetic reaction mechanisms:
- using both direct and indirect measurements
 the error of measurements is used for the calculation of the uncertainty of parameters
- ATcT: the simulated data are a linear functions of the parameters
kinetics: the simulated data are obtained by solving ODEs or PDEs
(strongly nonlinear functions of parameters)
 B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005)

Uncertainty of <i>k</i> at a given temperature			
Uncertainty of (direct) rate coefficient measurements:			
very high quality data typical good data typical data	uncertainty factor u = 1.26 \Leftrightarrow f =0.1 $\Leftrightarrow \pm$ 8 % (1 σ) uncertainty factor u = 2.00 \Leftrightarrow f =0.3 $\Leftrightarrow \pm$ 26 % (1 σ) uncertainty factor u = 3.16 \Leftrightarrow f =0.5 $\Leftrightarrow \pm$ 47 % (1 σ)		
(high level) theoretical determinations: TST/master equation calculations			
best systems multi well, main channels multi well, minor channels	uncertainty factor $u= 2.00 \Leftrightarrow f=0.3 \Leftrightarrow \pm 26 \% (1\sigma)$ uncertainty factor $u= 3.16 \Leftrightarrow f=0.5 \Leftrightarrow \pm 47 \% (1\sigma)$ uncertainty factor $u=10 \Leftrightarrow f=1.0$		
C. F. Goldsmith, A. S. Tomlin, S. J. Klippenstein: Uncertainty propagation in the derivation of phenomenological rate coefficients from theory: A case study of <i>n</i> -propyl radical oxidation <i>Proc. Combust. Inst.</i> , 34 , 177-185 (2013)			
J. Prager, H. N. Najm, J. Zádor: Uncertainty quantification in the <i>ab initio</i> rate-coefficient calculation for the CH ₃ CH(OH)CH ₃ +OH \rightarrow CH ₃ C.(OH)CH ₃ +H ₂ O reaction, <i>Proc. Combust. Inst.</i> , 34 , 583-590 (2013)			

Local uncertainty analysis of chemical kinetic models $f_j \rightarrow \sigma^2(\ln k_j)$ uncertainty parameter f_i is transformed to the variance of $\ln k_j$ $\partial Y_i/\partial \ln k_j$ seminormalized local sensitivity coefficients $\sigma_{K_j}^2(Y_i) = (\partial Y_i/\partial \ln k_j)^2 \sigma^2(\ln k_j)$ contribution of the uncertainty of parameter k_j to the variance of result Y_i $\sigma_{K}^2(Y_i) = \sum_j \sigma_{K_j}^2(Y_i)$ variance of result Y_i due to kinetic uncertainties $\sigma_{T_j}^2(Y_i) = (\partial Y_i/\partial \Delta_f H_{298}^\circ(j))^2 \sigma^2(\Delta_f H_{298}^\circ(j))$ contribution of the uncertainty of the enthalpy of formation of species *j* to the variance of result Y_i $\sigma^2(Y_i) = \sigma_K^2(Y_i) + \sigma_T^2(Y_i) = \sum_j \sigma_{K_j}^2(Y_i) + \sum_j \sigma_{T_j}^2(Y_i)$ estimated total variance of result Y_i from both kinetic and thermodynamic uncertainties T. Turányi, L. Zalotai, S. Dóbé, T. Bérces: Effect of the uncertainty of kinetic and thermodynamic data on methane flame simulation results, *Phys. Chem. Chem. Phys.*, 4, 2568-2578 (2002)

Example: the uncertainty of methane flame simulation results

The investigated methane flames:

- one dimensional, adiabatic, freely propagating, laminar, premixed stationary flame investigated at equivalence ratios
- φ = 0.70 (lean), 1.00 (stoichiometric), and 1.20 (rich)
- cold boundary conditions p = 1.0 atm and T = 298.15 K

Monitored outputs:

- laminar flame velocity
- maximum temperature
- maximum species concentration of H, O, OH, CH, CH₂

Comparison of the results of local and global (Monte Carlo) uncertainty analyses for a stoichiometric, stationary, flat methane-air flame

	result	calculated variances from local Monte Carlo uncertainty analyses		
flame velocity max. T max. w _H max. w _O max. w _{OH} max. w _{CH} max. w _{CH2}	38.1 cm/s 2224.2 K 2.14x10 ⁻⁴ 1.74x10 ⁻³ 5.27x10 ⁻³ 8.07x10 ⁻⁷ 2.54x10 ⁻⁵	4.6 cm/s 2.8 K 14.7% 13.3% 3.6% 46.3% 23.8%	6.2 cm/s 1.7 K 12.6% 10.4% 4.0% 49.2% 24.0%	
				125

Largest and smallest results that can be achieved with any parameter combination, selected from the domain of uncertainty of the parameters

	nominal simulation result	minimal achiev	maximal able result
		domot	
flame velocity	38.1 cm/s	21.3 cm/s	61.6 cm/s
max. T	2224.2 K	2217.4 K	2228.6 K
max. w _H	2.14x10 ⁻⁴	63.1%	144.4%
max. w_0	1.74x10 ⁻³	66.9%	136.1%
max. w _{OH}	5.27x10 ⁻³	86.4%	114.8%
max. W _{CH}	8.07x10 ⁻⁷	15.5%	474.6%
max. w _{CH2}	2.54x10 ⁻⁵	37.9%	219.5%
Conclusion:			
Physically irrealis	tic results can be obtained,	even if the parar	neters were randomly
selected from the	uncertainty ranges recomm	nended by the ga	s kinetics databases.
Reasons: (1) thes	se uncertainties are based o	on direct measure	ements;
(2) correlations of	f uncertainties are not taker	n into account.	126

Methane flame une	certainty analysis:
general co	onclusions
Good agreement between the calculat	ed total variances by the local
uncertainty analysis and the Monte	Carlo method. <mark>(surprise)</mark>
Good agreement between the importa	nce of parameters assessed by the
local uncertainty analysis and the se	ensitivity indices. <mark>(surprise)</mark>
Better simulation results can be achi	eved, if the rate coefficients of
a few reactions and the enthalpies of	f formation of a few species
are known better (= with smaller varia	ance)
These represent a small fraction of th	ne total number of species/reactions.
Significant rate coefficients: $O_2 + H = OH + O$ $O_2 + H + M = HO_2 + M$ $CO + OH = CO_2 + H$ $H + CH_3 + M = CH_4 + M$ $CH_3 + OH = CH_2(S) + H_2O$ $C_2H_2 + OH = C_2H + H_2O$ $C_2H_2 + CH = C_2H + CH_2$	Significant enthalpies of formation: OH $CH_2(S)$ CH_2 CH_2OH CH_2OH CH_2CHO
$H + CH_2 = CH + H_2$	130

Uncertainty analysis study of the laminar methane flame the points to be corrected

Which were the weak points of the previously discussed uncertainty analysis study?

"uncertainty of the rate coefficient" = uncertainty of Arrhenius parameter A was considered only

What is the uncertainty of each Arrhenius parameter?

The used uncertainty parameters f were based on the direct measurements Considering also the indirect measurements decreases the uncertainty

At the development of detailed reaction mechanisms the direct and indirect experimental results are both considered; the nominal parameter set contains correlations that have to be taken into account. Considering the parameter correlations is needed

Temperature dependence of uncertainty factor *f*

Uncertainty parameter f is either constant (Tsang, Warnatz, Konnov)

or defined in temperature regions (Baulch et al. evaluations):

$$f(T) = \begin{cases} f_1 & \text{if } T \in (T_1, T_2) \\ f_2 & \text{if } T = T_3 \\ \vdots & \vdots \end{cases}$$

 f_1, f_2, f_3, \dots corresponds to the actual scatter of measurements in this temperature region.

We will call them *f*_{original} values.

The temperature dependence of the rate coefficients imposes a relation among the uncertainty parameter *f* values at different temperatures.

The f_{original} values are not in accordance with the temperature dependence of the rate coefficient k

Features of the uncertainty parameter f							
Baulch et al. (2005):							
temperature independent f (constant f(T) function) OR	about 50%						
a verbally defined f(T) function	about 50%						
<i>"f</i> = 0.1 at 800 K raising to 0.2	2 at 2000 K "						
Other sources: NIST Chemical Kinetics Database, Tsang, Warnatz, temperature independent <i>f</i> values.	Konnov						
Good features:							
 <i>f</i> factors are available for several hundred <i>f</i> factors are very realistic (to our experience) 	reactions e)						
Bad features:							
 derivation of the <i>f</i> parameter is not docum temperature dependence is missing or not cannot be used for the calculation of the Arrhe 	ented t well defined of the uncertainty enius parameters						
\Rightarrow Reassessment of the uncertainty parameters is nee	ded!						

	Reassessment of the <i>f</i> (<i>T</i>) functions is needed!							
We I for t	We have written a MATLAB + Fortan code for the semiautomatic calculation of the <i>f</i> (<i>T</i>) functions.							
Majo	r steps for a given elementary reaction:							
1	collection of all direct measurements and theoretical calculations source: NIST Chemical Kientics Database + recent reviews							
2	foreward direction: selected (direction with more data) backward direction: converted to forward direction Arrhenius parameters							
3	preparation of a datafile: each line one measurement/calculation squib + temperature range + Arrhenius parameters							
4	selection of a mean line $(\ln k - 1/T)$ in the middle of uncertainty band: almost always Baulch <i>et al.</i> , 2005							
5	MATLAB code: interactive elimination of outliers							
6	automatic calculation of "empirical" f points at several temperatures fitting the elements of the covariance matrix to these points (Fortran code) plotting the experimental/theoretical results + the recalculated $f(T)$							

Topic 8: Mechanism optimisation and determination of the posterior parameter uncertainties

steps of mechanism optimisation,

relations between the following uncertainty domains:

prior uncertainty of the input parameters, uncertainty of the model results calculated from the prior uncertainty of the input parameters, uncertainty of model results measured by indirect experiments, prior uncertainty of the input parameters, uncertainty of the model results calculated from the posterior uncertainty of the input parameters;

results of mechanism optimization

Uncertainty of reaction rate parameters	
Reaction rate parameters: Arrhenius parameters <i>A</i> , <i>n</i> , <i>E</i> , 3 rd body collision efficiencies, (parameters of presure dependence: Lindemann and Troe parameter (enthalpies of formation)	؛rs)
<i>a priori</i> uncertainty of reaction rate parameters: uncertainty of reaction rate parameters, deduced from available direct measurement data and theoretical calculations	
<i>a posteriori</i> uncertainty of reaction rate parameters: uncertainty of reaction rate parameters, deduced from fitting to direct measurement data + theoretical calculations results + indirect measurement data	
1	54

Applications and extensions by Hai Wang
 Application of the method for a series of the subsystems of the USC Mech/JetSurF mechanism
propane Z. Qin, V. Lissianski, H. Yang, W.C. Gardiner, S. Davis, H. Wang Proc.Combust. Inst., 2000, 28, 1663-1669.
H ₂ /CO S. Davis, A. Joshi, H. Wang, F. Egolfopoulos
ethylene D.A. Sheen, X. You, H. Wang, T. Løvås,
n-heptane D.A. Sheen, H. Wang,
Combust. Flame, 2011, 158, 645-656.
2. Method of Uncertainty Analysis using Polynomial Chaos Expansions (MUM-PCE)
Sneen, D. A.; You, X.; Wang, H.; Løvas, I. Proc. Combust. Inst., 32, 535-542(2009).
3. Fitting to many original experimental datapoints (not only fitting to selected targets)
Sheen, D.; Wang, H. <i>Combust. Flame</i> , 158 , 645-656(2011)

Method of Uncertainty quantification and Minimization using Polynomial Chaos Expansions: MUM-PCE method of David Sheen and Hai Wang

The approximation of the kinetic model (called "response surface" or "surrogate model") and the calculation of uncertainty propagation is done in a single step.

Scaling the uncertainty region of a parameter to interval [-1, +1]

$$x_i = \frac{\ln k_i / k^0}{\ln f_i}$$

 k_i actual value of the rate coefficient

 k^0 nominal value of the rate coefficient

f uncertainty parameter

 $x_i = 0$ k is at the nominal value

 $x_i = -1$ k is at the lower bound

 $x_i = +1$ k is at the upper bound

MUM-PCE 2

The approximation of the solution of the kinetic model (e.g. a calculated flame velocity) as a function of parameters within their range of uncertainty, using a 2^{nd} order polynomial:

$$\eta_r(\mathbf{x}) = \eta_{r,0} + \sum_{i=1}^m a_{r,i} x_i + \sum_{i=1}^m \sum_{j \ge i}^m b_{r,i,j} x_i x_j$$

Consider x_i as a random variable (denoted by ξ_i) with unit normal distribution.

The model result will also be a random variable, calculated by

$$\eta_r(\boldsymbol{\xi}) = \eta_r(\mathbf{x}^{(0)}) + \sum_{i=1}^m \hat{\boldsymbol{\alpha}}_{r,i} \xi_i + \sum_{i=1}^m \sum_{j\geq i}^m \hat{\boldsymbol{\beta}}_{r,ij} \xi_i \xi_j + \dots,$$

The parameters of this expansion can be calculated from the coefficients of the response surface polynomial:

$$\hat{\boldsymbol{\alpha}}_{r} = \frac{1}{2} \mathbf{I}_{M} \mathbf{a}_{r} \qquad \qquad \hat{\boldsymbol{\beta}}_{r} = \frac{1}{4} \mathbf{I}_{M}^{T} \mathbf{b}_{r} \mathbf{I}_{M}$$

MUM-PCE 3

The new coefficients provide the variance of the fitted parameters:

$$\sigma_{r}(\boldsymbol{\xi})^{2} = \sum_{i=1}^{m} \hat{\boldsymbol{\alpha}}^{2}_{r,i} + 2\sum_{i=1}^{m} \hat{\boldsymbol{\beta}}^{2}_{r,ij} + \sum_{i=1}^{m} \sum_{j>i}^{m} \hat{\boldsymbol{\beta}}^{2}_{r,ij}$$

a priori uncertainty of the rate coefficients: uncertainty as we know it **before the optimisation**.

a posteriori uncertainty of the rate coefficients: much smaller uncertainty, obtained **as a result of optimisation**.

Mechanism optimization at ELTE Chemical Kinetics Laboratory all indirect measurement data should be collected 1 that are applicable for testing a mechanism. sensitivity analysis for finding the important reaction steps 2 (simulated data points wiith respect to the rate parameters) the rate parameters of these reactions will be optimised determination of the a priori uncertainty of the rate parameters 3 (= determination of the domain of allowed parameter values) all reliable direct measurement data related to the important reactions are collected global parameter optimisation 5 considering both the indirect and direct measurement data \Rightarrow new rate parameters with physical meaning ⇒ a posteriori uncertainty domain of rate parameters Turányi T, Nagy T, Zsély IGy, Cserháti M, Varga T, Szabó B, Sedyó I, Kiss P, Zempléni A, Curran H J Determination of rate parameters based on both direct and indirect measurements. 162 Int. J. Chem. Kinet. 44, 284-302 (2012)

Example: optimization of a methanol and formaldehyde combustion mechanism

- **Methanol** is an alternative automotive fuel, fuel additive and feedstock in various industrial processes
- Model system for studies of C₁ combustion: important radicals include CH₂OH and CH₃O
- Relevance for the oxidation of higher hydrocarbons/ oxygenates
- Not all experimentally observed combustion characteristics (e.g. ignition, flame propagation, speciation profiles) are well-described by available kinetic mechanisms

	Type of measurement	Data	Data	n / atm	T/K
	experimental facility	sets	points	p / uun	
- Indiroot	Ignition delay times	81	574		
- muneci	Shock tube	67	421	0.3–51.7	963–2180
measurements	Shock tube (CH ₂ O)	7	99	1.6	1363–2304
	Rapid compression machine	7	54	9.3–40.6	817–980
D : (Burning velocity measurements	87	632		
Direct measure-	Outwardly/ spherically propagating flame	35	170	0.5–9.9	298–500
ments of rate	Counterflow twin-flame	5	90	1	298–368
inclus of face	Heat flux method / laminar flat flame	41	280	0.2–1	298–358
coefficients	Flame-cone method	6	92	1	298–413
(926 data points/ 66 data sets)	Concentration measurements	97	23,694		
	Flow reactor concentration-time profiles	18	1,452	1–20	752–1043
- The eventional vete	Flow reactor conctime profiles (CH ₂ O)	13	462	1–6	852–1095
 Theoretical rate 	Flow reactor outlet concentrations	13	444	1–98.7	600–1443
determinations	Flow reactor outlet concentrations (CH ₂ O)	3	156	1.05	712–1279
(22 data pata)	Jet-stirred reactor outlet concentrations	9	711	1–20	697–1200
(35 data sets)	Shock tube concentration-time profiles	14	12,756	0.3–2.5	1266–2100
	Shock tube conctime profiles (CH ₂ O)	27	7,713	1.5–2.0	1244–1907

Local se Important re	e ns acti	itivity ana ons in formald	l lys ehyd	iS de and methano	ol co	ombustion	
Brute force metho	od (pa	arameters varied by	+5%)	using the initial me	chani	ism, shown: (S _{avg} ≥	0.1)
$\begin{array}{l} \label{eq:horizontal_set} \textbf{CH}_3 \textbf{OH} \mbox{ shock tube IIC} \\ \hline \textbf{CH}_0 \textbf{OH} \mbox{-} \textbf{CH}_2 \textbf{OH} \mbox{-} \textbf{H}_2 \textbf{O}_1 \mbox{-} \textbf{H}_2 \textbf{O}_1 \mbox{-} \textbf{H}_2 \$	0.54 0.54 0.54 0.24 0.20 0.14 0.12 0.11 0.10 0.10 5 0.86 0.53 0.43 0.42 0.41 0.40 0.32	$\begin{array}{c} \textbf{CH}_{3}\textbf{OH} \ \textbf{RCM IDTs}\\ \textbf{CH}_{0}\textbf{OH} \ \textbf{HO}_{2} = (\text{H}_{0}\textbf{OH} \ \textbf{HO}_{2} = (\text{H}_{0}\textbf{OH} \ \textbf{HO}_{2} + (\text{H}_{0}) \\ \textbf{OH}^{-} \ \textbf{OH}(+M) = \text{H}_{0}\text{O}_{1}\text{HO})\\ \textbf{OH}^{-} \ \textbf{HO}_{2} = \text{HO}_{2} + \text{O}_{2} \\ \textbf{HO}_{2} = \text{HO}_{2} + \text{O}_{2} \\ \textbf{HO}_{2} = \text{HO}_{2} + \text{O}_{2} + \text{O}_{2} \\ \textbf{HO}_{2} + \text{HO}_{2} = \text{HO}_{2} + \text{O}_{2} \\ \textbf{HO}_{1} + \text{HO}_{2} = \text{HO}_{2} + \text{O}_{2} \\ \textbf{HO}_{1} + \text{HO}_{2} = \text{HO}_{1} + \text{O}_{2} \\ \textbf{CH}_{0} + \text{HO}_{2} = \text{HO}_{1} + \text{O}_{2} \\ \textbf{CH}_{0} + \text{HO}_{2} = \text{HO}_{1} + \text{O}_{2} \\ \textbf{HO}_{1} + \text{O}_{2} = \text{O}_{2} + \text{H} \\ \textbf{HO}_{1} + \text{O}_{2} = \text{O}_{2} + \text{H} \\ \textbf{HO}_{1} + \text{HO}_{1} - \text{CH}_{0} - \text{HO}_{1} \\ \textbf{HO}_{1} + \text{HO}_{1} - \text{OH}_{1} - \text{OH}_{1} \\ \textbf{HO}_{1} + \text{HO}_{1} - \text{OH}_{1} - \text{OH}_{1} \\ \textbf{HO}_{1} + \text{HO}_{1} + \text{OO}_{1} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{1} \\ \textbf{HO}_{1} + \text{O}_{2} + \text{O}_{1} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{1} \\ \textbf{HO}_{2} + \text{HO}_{1} = \text{HO}_{2} + \text{O}_{1} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{1} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{1} \\ \textbf{HO}_{2} + \text{HO}_{2} + \text{HO}_{1} \\ \textbf{HO}_{2} + \text{HO}_{2} + \text{HO}_{1} \\ \textbf{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{2} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{2} \\ \textbf{HO}_{1} + \text{HO}_{2} + \text{HO}_{2} \\ \textbf{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} \\ \textbf{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} + \text{HO}_{2} \\ \textbf{HO}_{2} + \text{HO}_{2} + H$	1.00 0.55 0.31 0.28 0.19 0.13 0.10 cities 0.32 0.38 0.35 0.32 0.33 0.23 0.23 0.23 0.18	$\begin{array}{c} CH_3OH speciation data (CH_00H+H0_2 = CH_10H+H0_2) \\ CH_00H+H0_2 = (CH_10H+H0_2) \\ CH_00H+H0 = CH_00+H_0 \\ CH_00H+H0 = CH_00H+H0_2 \\ CH_00H+H0 = CH_00H+H0_2 \\ CH_00H+H0 = CH_00H+H0_2 \\ CH_00+H0_1 = HC0+0_1 \\ CH_00H = HC0+H_0 \\ CH_00H+H0_2 = CH_00+H0_2 \\ CH_00H+H0_2 \\ CH_0$	ata 0.36 0.29 0.25 0.25 0.23 0.23 0.21 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.18 0.17 0.16 0.15 0.15	CH ₂ O speciation data HC(H ₂) = H-CO(H) CH ₂ OH = H-CO(H) CH ₂ OH = HCO-H ₂ CH ₂ OH = HCO-H ₂ CH ₂ OH = HCO-H ₂ CH ₂ OH = CO-H ₂ OH CH ₂ OH = HCO-H ₂ O CH ₂ OH = HCO+H ₂ O CH ₂ OH = HCO+H ₂ O CH ₂ OH = HCO+H ₂ O CH ₂ OH = H ₂ O ₁ O+OH HCO-HI = CO+H CH ₂ OH = H ₂ O+OH HCO-HI = H ₂ O+O HCO(H) = H-OH HO ₂ -HI = OH+OH HO ₂ -HI = OH+OH HO ₂ -HI = OH+OH	0.46 0.38 0.34 0.30 0.27 0.27 0.19 0.17 0.17 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
$\begin{split} \dot{O}H{-}\dot{O}H({-}\dot{M}) &= H{-}O_{2}({+}\dot{M}) \\ HCO{+}H &= CO{+}H_{2} \\ \dot{C}H_{2}O{+}H{-}CO{+}H_{2}O \\ \dot{C}H_{2}O{+}H{-}HCO{-}CH_{2}O{-}CH_{2}O{-}CH_{2}O{-}CH_{2}O{-}CH_{2}O{-}CH_{2}O{-}CH_{2}O{-}CH_{2}O{-}OH_{2}O{-}CH_{2}O{-}OH_{2}O$	0.23 0.18 0.16 0.15 0.13 0.12 0.10 0.10 0.10	ŬH=OH(+M) = H ₂ O ₃ (+M) CH ₂ OH+H = CH ₂ OH+H ₂ OH+H ₂ = Ĥ+H ₂ O HĊO+Ĥ = CO+H ₂	0.17 0.16 0.15 0.14	Optimized Already optin Not op	reaction nized H timized I	CH_JOH+O_2 = CH_JOH+O_ HCO+H = CO+H_2 HO_2+HO_2 = H_2O_2+O_2 is (this work) //CO reactions reactions	0.11 0.11 0.10

Mechanism optimization 2

Optimization targets:

- 517 Shock tube, 59 RCM ignition delay points
- 153 Laminar burning velocity points
- 2,508 Flow reactor species concentration points
- 706 Jet-stirred reactor species concentration points
- 20,460 Shock tube species concentration points
- 926 Direct measurements of reaction rate coefficients
- 33 Theoretical determinations of reaction rate coefficients

Polynomial surrogate model ("response surfaces") used for computationally expensive flame simulations Hierarchical optimization strategy:

Step-by-step inclusion of reactions and optimization targets

Response surfaces

- **Polynomial approximation** of the simulations (up to 4th order)
- Response surfaces were generated for each flame velocity experiment
 up to 10,000x times faster simulations
- 20,000 samples of the active parameters
 - · Different parameters at each condition, based on sensitivity analysis
- Accuracy of the polynomials was tested against a new sample, which had not been used for polynomial creation
 - Maximum allowed deviations: $\Delta \ln(\tau/s)_{max} = 0.2$; $\Delta v_{l max} = 2 \text{ cm/s}$
- · About 80% of all data points could be fitted accurately
 - Only the flame response surfaces were used The other simulated data were calculated with direct integration

Me	chanism opt	imiza	tion I	results		
No.	Reaction	f _{prior}	f _{posterior}	f _{posterior+H2/CO}		When also considering
R14/R15	$H\dot{O}_2 + H\dot{O}_2 = H_2O_2 + O_2$	0.30-0.70	0.08–0.71	0.09–0.57	И	all sensitive H ₂ /CO reactions:
R37 LPL	$CH_2O+M = CO+H_2+M$	0.50	0.09-0.12	0.09–0.12	→	
R38	$CH_2O+H = HCO+H_2$	0.60	0.08-0.10	0.09–0.11	→	
R40	CH ₂ O+OH = HCO+H ₂ O	0.34-0.43	0.22-0.30	0.19–0.27	И	
R41	$CH_2O+O_2 = H\dot{C}O+H\dot{O}_2$	1.20	0.19–0.20	0.18-0.20	→	
R47	ĊH ₃ +HÓ ₂ = CH ₃ Ó+ÓH	0.46-0.76	0.26-0.49	0.26-0.38	И	
R53	$\dot{C}H_3 + H\dot{O}_2 = CH_4 + O_2$	1.00	0.25-0.45	0.25-0.32	Ы	
R60	$\dot{C}H_2OH+O_2 = CH_2O+H\dot{O}_2$	0.50	0.27-0.38	0.27-0.33	Ы	
R67 LPL	$CH_3\dot{O}+M = CH_2O+\dot{H}+M$	0.84-1.24	0.16-0.26	0.16-0.21	→	
R77 HPL	ĊH+ĊH₃ = CH₃OH	0.34-0.84	0.20-0.31	0.19–0.28	Ы	
R77 LPL	$\dot{O}H+\dot{C}H_3+M = CH_3OH+M$	1.20	0.07-0.39	0.07–0.27	И	and the corresponding
R80	$CH_3OH+\dot{H} = \dot{C}H_2OH+H_2$	0.44-1.07	0.18-0.27	0.17-0.24	→	H /CO data
R81	$CH_3OH+\dot{H} = CH_3\dot{O}+H_2$	1.70	0.24-0.38	0.24-0.31	→	112/00 data
R83	$CH_3OH+\dot{O}H = CH_3\dot{O}+H_2O$	0.70	0.13-0.44	0.12-0.25	И	
R84	$CH_3OH+OH = CH_2OH+H_2O$	0.46-0.87	0.19–0.41	0.18-0.40	→	
R85	$CH_3OH+O_2 = \dot{C}H_2OH+H\dot{O}_2$	0.80	0.78–1.01	0.72-0.91	Ы	
R87	$CH_3OH+H\dot{O}_2 = \dot{C}H_2OH+H_2O_2$	1.10	0.20-0.25	0.16-0.21	И	
R88	$CH_3OH+HO_2 = CH_3O+H_2O_2$	0.70	0.15-0.42	0.15-0.26	Ы	

Mechanism comparison results								
Error function values for each type of data and overall								
Mechanism	Ave n delay les CH2O	errage error function value Burning Concentration velocities profiles				$E = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N_i} \sum_{j=1}^{N_i} \left(\frac{Y_{ij}^{\text{mod}} - Y_{ij}^{\text{exp}}}{\sigma(Y_{ij}^{\text{exp}})} \right)^2$		
AAU-2008 Alzueta-2001	28.4 103.9ª	2.6 11.3	no transport no transport	21.3 32.1	18.9 15.9	-	E = 9: data can be described within a 3 σ uncertainty	
Christensen-2016 Hamdane-2012 Klippenstein-2011	35.4 41.2 131.8 7.6	3.3 6.4 3.4 3.4	5.2 (72.2) 1.7 1.9	15.7 109.6 14.9 14.8	8.4 12.9 6.4 6.4	16.3 (59.8) 41.5 6.9		
Rasmussen-2008 CaltechMech2.3-2015	<u>32.2</u> 51.4	5.2 2.5	17.9 3.0	40.9	12.3 6.4	<u>25.3</u> 19.7		
Kathrotia-2009 Kathrotia-2011 Konnov-2009 Leplat-2011	11.8 10.7 54.6 410.5ª	8.2 7.5 6.1	[3.0] [76.0] 22.2	19.9 60.9 25.6 ^b 52.6	13.1 43.0 37.2 38.1	– [23.6] [51.7] ^b 131.6ª	for all types	
Marinov-1999 SanDiego-2014 SaxenaWilliams-2007	260.7 24.7 86.2	20.7 1.6 1.7 2.3	(14.1) 3.8 2.3 (8.5)	36.7 31.4 17.3 27.8	30.4 10.0 9.6 10.1	(90.4) 16.2 30.0 (178.4)ª	Of Gata!	
Aramco1.3-2013 NUIG-16.09-2016	(41.3) (51.6)	(11.1)	(4.3) (4.2)	(16.0) (20.0)	(12.7)	(18.6) (22.2)		
Optimized mechanism No. of data sets	6.8 74 475	2.0 2.0 7 99	<u>1.6</u> 87 632	12.0 54 15 363	6.3 43 8 331	5.9 265 24 900		
	7/5	33	032	10,000	0,001	27,900		

Lifetimes and time scales								
Half life:								
Time period needed for the concentration of a species to decrease to $\frac{1}{2}$, if during this time it is not produced and the concentrations of all other species remains identical.								
Lifetime:								
Time period needed for the concentration of a species to decrease to 1/ <i>e</i> , if during this time it is not produced and the concentrations of all other species remains identical.								
Single first order reaction : $Y = Y_0 e^{-kt}$ A \rightarrow P								
lifetime: $ au = \frac{1}{k}$ half life: $ au_{1/2} = \frac{\ln 2}{k}$								
Several first order reactions (<i>e.g.</i> in photochemistry the reactions of an excited species):								
$ \begin{array}{ccc} A \to P_{1} \\ \to P_{2} \\ \to P_{3} \end{array} & Y = Y_{0} \ \mathrm{e}^{-(k_{1}+k_{2}+k_{3})t} & \text{lifetime:} & \tau = \frac{1}{(k_{1}+k_{2}+k_{3})} \\ \end{array} $								

Lifetime

Atmospheric chemistry:

small radical concentrations \Rightarrow radical-radical reactions are missing (e.g. 2 CH₃ \rightarrow C₂H₆) \Rightarrow no Y₁² type terms in the kinetic system of ODEs

 P_i effect of producing steps

 L_i effect of consuming steps

 Production rate of Y_i :
 $dY_i/dt = P_i - L_i Y_i$
 Y_i lifetime:
 $\tau = \frac{1}{L_i}$

 General reaction mechanism:

 Y_i lifetime:
 $\tau = -\frac{1}{j_{ii}}$ where $j_{ii} = \frac{\partial f_i}{\partial Y_i}$
 j_{ii} is the *i*th diagonal element of the Jacobian
 185

Example $A \rightarrow B \qquad k_1 \\ A + C \rightarrow D \qquad k_2 \\ B \rightarrow A \qquad k_3$ Production rate of species A : $da/dt = -k_1a - k_2 ac + k_3 b \\ da/dt = k_3 b - (k_1 + k_2 c)a$,,Atmospheric chemical" lifetime: $dY_i/dt = P_i - L_i Y_i \qquad \tau_A = 1/L_A = 1/(k_1 + k_2 c)$ General lifetime: $j_{AA} = \frac{\partial (da/dt)}{\partial a} = -(k_1 + k_2 c) \qquad \tau_A = -1/j_{AA} = 1/(k_1 + k_2 c)$ 186

Modes Previous assumption: "The concentration of a single species is changed by $\Delta y'_i$ and the concentrations of the other species are not changed" This is approximately true if the concentration of the changed species is low and its lifetime is short. Usually changing the concentration of a single species induces the change of the concentrations of several other species. A more general approach: \Rightarrow the concentrations of several species are changed simultaneously by $\Delta \mathbf{Y}$ $\frac{\mathrm{d}(\Delta \mathbf{Y})}{\mathrm{d}\,t} \approx \frac{\partial \mathbf{f}}{\partial \mathbf{Y}} \Delta \mathbf{Y} = \mathbf{J} \Delta \mathbf{Y}$ linear approach to the change of the perturbation: The solution of this ODE: (assuming that the Jacobian does not change during the short time of relaxation) $\Delta \mathbf{Y}(t) = e^{\mathbf{J}\,\tau} \Delta \mathbf{Y}(t_1) \qquad \Rightarrow \qquad \Delta Y_i = C_1 e^{\lambda_1 \tau} + C_2 e^{\lambda_2 \tau} + C_3 e^{\lambda_3 \tau} + \dots + C_n e^{\lambda_n \tau}$ where $\tau = t - t_1$ is the elapsed time from the start of perturbation 195

l	Modes 2		
introducing new variables: <i>c.f.</i> normal coordinates in spe	z vector of mo ctroscopy	odes	
calculation of mode z_i :	$z_i = \mathbf{w}_i \mathbf{Y}$	$\mathbf{z} = \mathbf{V}$	VY
where w _i is the <i>i</i> -th row o	f matrix W		
calculation of concentration y_i where \mathbf{v}_i is the <i>i</i> -th colum	: $Y_i = \mathbf{v}_i \mathbf{z}$ on of matrix V	$\mathbf{Y} = \mathbf{V}$	V z
the transformated kinetic syste	em of ODEs: $\frac{dz}{dt}$	$\dot{\mathbf{f}} = \mathbf{W} \mathbf{f}(\mathbf{V}\mathbf{z}),$	$\mathbf{z}_0 = \mathbf{W} \mathbf{Y}_0$
If perturbation ∆ Y is towards but for all the other <i>j</i> direction	direction \mathbf{w}_1 , the as $z_j = 0$.	n z ₁ ≠0,	
The change of z_i after pertur	bation Δz_i	$(t) = \Delta z_i^0 e^{\lambda_i t}$	t
IMPORTANT: the Jacobian c therefore transformation $\mathbf{Y} \rightarrow \mathbf{V}$	hanges in the sp z also changes	ace of concent with Y !	trations, ¹⁹⁶

Modes 3

Denote \mathbf{z}_{f} the fast modes:

$$\widetilde{\mathbf{Y}}(t) = \mathbf{Y}(t) + \Delta \mathbf{Y}(t)$$

$$\frac{d \widetilde{\mathbf{Y}}}{dt} = \frac{d(\mathbf{Y} + \Delta \mathbf{Y})}{dt} = \mathbf{f}(\mathbf{Y}, \mathbf{p}) + \frac{d \Delta \mathbf{Y}}{dt}$$

$$\frac{d \mathbf{z}}{dt} = \mathbf{W} \mathbf{f}(\mathbf{V}\mathbf{z}), \qquad \mathbf{z}_0 = \mathbf{W} \mathbf{Y}_0$$

$$\frac{d z_i}{dt} = \mathbf{w}_i \mathbf{f} = \mathbf{w}_i \mathbf{f}(\mathbf{Y}^m) + \mathbf{w}_i \frac{d \Delta \mathbf{Y}}{dt} = \frac{d \Delta z_i}{dt}$$
Let *i* belong to a fast mode and let $\mathbf{W}_i \mathbf{f}(\mathbf{Y}^m) = \mathbf{0}$
Y^m be a point on the manifold.
Therefore, for mode *i*:
$$\frac{d \Delta z_i}{dt} = \mathbf{w}_i \mathbf{f}$$
197

<text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><table-container><table-row><table-container><table-row><table-row><table-row><table-container>

Need for the reduction of large reaction mechanisms

Increasing knowledge in chemical kinetics \Rightarrow increasing size of reaction mechanisms

Typical sizes of detailed reaction mechanisms:

high temperature combustion:30-100 species, 200-500 reaction stepslow temperature combustion:500 species, 10000 reaction stepstropospheric chemistry:500 species, 10000 reaction steps

Large mechanisms are not for humans:

Small reduced mechanisms are needed for the

- understanding of the chemical processes
- fast calculation of chemistry

Removal of redundant reactions the classic rate-of-production analysis

The traditional method: rate-of-production analysis (ROPA):

The percentage contribution of each reaction step to the formation and removal of each species is investigated in several time points.

A reaction step can be eliminated, if its contribution is less then (say) 5% to the formation/removal of any species. Example:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -k_1 xy + k_2 ya - 2k_3 x^2 + k_4 xa - 0.5k_5 xy$$

all producing termsall consumption terms $+k_2ya + k_4xa$ $-k_1xy - 2k_3x^2 - 0.5k_5xy$

contribution of reaction step 4 to the producing terms

Easy to understand and easy to calculate.

 $\frac{dx}{dx} =$

d*t*

BUT: large amount of data have to be considered if there are many time poinst, reaction steps and species.

	Table of contributions calculated by KINALC								
		for a met	thane	pyr	olysis simulation				
CH4		Rate	: -1.08	82E-08					
	NO	Contribution		Ŧ	reaction				
	1	-1.17547E-08	34.8 %	C 152	C2H3+CH4 => C2H4+CH3				
	2	9.13403E-09	39.8 %	P 151	$C2H4+CH3 \implies C2H3+CH4$				
	3	-7.16821E-09	21.2 %	2 140	$CH \equiv CCH2.+CH4 \implies CH \equiv CCH3+CH3$				
	4	-5.71162E-09	16.9 %	2 136	CH2=CHCH2.+CH4 => CH2=CHCH3+CH	3			
	5	3.72978E-09	16.2 %	P 139	CH=CCH3+CH3 => CH=CCH2.+CH4				
	6	3.60756E-09	15.7 %	P 135	CH2=CHCH3+CH3 => CH2=CHCH2.+CH	4			
	7	3.45436E-09	15.0 %1	P 143	C2H6+CH3 => C2H5+CH4				
CH3		Rate	: 4.63	36E-10					
	No	Contribution		#	reaction				
	1	-1.69871E-08	22.7 %	C 7	2CH3 => C2H6				
	2	1.17547E-08	15.6 %1	P 152	C2H3+CH4 => C2H4+CH3				
	3	-9.13403E-09	12.2 %	2 151	C2H4+CH3 => C2H3+CH4				
	4	7.84580E-09	10.4 %	P 8	C2H6 => 2CH3				
C2H2		Rate	: 1.99	96E-09					
	No	Contribution		#	reaction				
	1	6 06561F-09	44 1 91	0 01	CH3-CHCH3 -> C3H3+CH3				
	2	-5 12527E-09	43 6 %	- 82	C2H2+CH3 = CH2=CHCH2				
	2	3 961012-09	29 1 91	5 100	$C2H2+CH3 \rightarrow CH2-CHCH2$.				
	4	-3 15073E-09	26.8 %	- 190	$H_{+}C_{+}H_{+$				
	5	_1 15098F-09	20.0 %	- 67	C2H2+CH3 = CH=CCH3+H				
	5	1.130985-09	2.0 %	. 07	CZIIZ COIS -> CII=CCIIS+II	212			
						213			

Principal component analysis of the sensitivity matrix: PCAS Another approach for the identification of redundant reaction steps (= identification of redundant parameters) $\widetilde{\mathbf{S}}_{1}$ $\widetilde{\mathbf{S}}_{2}$ \vdots It has been discussed in the local sensitivity analysis section. $\widetilde{\mathbf{S}} =$ In several time points the normalized local sensitivity matrix \mathbf{S}_r is calculated, component matrix $\widetilde{\mathbf{S}}$ is formed and the eigenvector-eigenvalue analysis of matrix $\tilde{\mathbf{S}}^{T}\tilde{\mathbf{S}}$ is carried out. $\widetilde{\mathbf{S}}_{r} = \{ (p_{k}/Y_{i})(\partial Y_{i}(t_{r})/\partial p_{k}) \}$ \mathbf{u}_i defines the parameters acting together for eigenvector j : influencing the concentrations at time t_r eigenvalue *i* : λ_i indicates the importance of the parameter group. A reaction step is important, if all species concentrations are considered in the objective function and if the corresponding rate parameter belongs to an important parameter group (large λ_i) and it is 214 important within the parameter group (large eigenvector element).

Integer programming methods				
$\dot{\mathbf{y}} = \boldsymbol{v} \mathbf{R}(\mathbf{y})$	d y /d <i>t</i> production υ stoichiometric R rates of the res	on rates belonging to the full mecha matrix action steps	anism	
$\dot{z} = v D R(z)$	d z /d <i>t</i> productie D diagonal matrix $d_{ii} = 0$ the reaction $d_{ii} = 1$ the reaction	on rates belonging to the reduced n ix: on step is missing from the reduced on step is present in the reduced m	nechanism 1 mech lech	
The aim is finding the reduced mechanism having k reaction steps with minimal deviation between the production rates of the full and reduced mechanisms by varying vector d .				
	min y - z subject to			
	$\dot{\mathbf{y}} = \boldsymbol{v} \mathbf{R}(\mathbf{y}), \qquad \mathbf{y}(0) =$	= y ₀		
	$\dot{z} = v R(z), \qquad z(0) =$	$=\mathbf{z}_{\mathbf{o}} 0 \le t \le b$		
	$\sum_{i=1}^N d_{ii} = k, \qquad d_{ii} =$	0 or 1		
L. Petzold, W. Zhu: Model reduction for chemical kinetics: An optimization approach. <i>AIChE Journal</i> 45 , 869-886 (1999)				

Genetic algorithm-based methods				
Again, the reduced mechanism is represented by a d vector with elements of either 1 or 0.				
The conceptua	al background and the terminology is based on evolu t	ion		
candidate red	uced mechanisms (called individuals):			
Individual 1	1100101010			
Individual 1 1100101010 Individual 2 1100111000				
Individual 2 1100111000 Individual 3 1100100011				
Individual 4	1110001010			
fitness criterion agreement of the reduced mechanism with the full mech				
genetic operators: cross over and mutation				
cross over exchange of sections of two individuals				
mutation	changing 0 to 1 OR 1 to 0 in an individual	220		

Removal of redundant species 2
Approach 1: elimination of species one-by-one via trial calculations The consuming reactions of each species is deleted one-by-one; the effect on the important species/reactions is investigated.
Problem: not effective enough; some species can be eliminated only together (<i>e.g.</i> participating in fast preequilibrium reactions) elimination of species groups ⇒ too many possibilities
Approach 2: Which species are directly linked to the important species? (this approach cannot handle the reproduction of important features)
Step 1: using an appropriate method, the direct link of each species to the important species is investigated (detection of "species group 1"). Step 2: assessment of the link of each species to the "species group 1". The newly identified closely lined species are added to the group, forming "species group 2".
Step <i>n</i> : The iteration is repeated, until no species is closely linked to "species group (<i>n</i> -1)" 224

114

115

<text><equation-block><text><text><equation-block><text><text><text>

T. Turányi: Reduction of large reaction mechanisms, New J. Chem., 14, 795-803 (1990)

 Connectivity Method 2.

 advantages and disadvanteges

 Advantages:

 • Simple, fast

 • Available in KINALC

 • Works well for small mechanisms

 Disadvanteges:

 The iteration is stopped, when a gap appers in the range of B_i values. BUT

 The best threshold is different from case to case.

 The user has to select the threshold manually.

 If there is a large number of species (500), there is no obvious gap!

 The special role of important species diminishes after many iterations; this may lead to the selection of redundant species.

Path Flux Analysis (PFA) methodThe first generation production (PA) and consumption (CA) fluxes of species A: $P_A = \sum_{i} \max(v_{A,i}, \omega_i, 0)$ $C_A = \sum_{i} \max(-v_{A,i}, \omega_i, 0)$ v_{Ai} stoichiometric coefficient of species A in reaction i ω_i net reaction rate (the difference of the forward and backward rates)The production (PAB) and consumption (CAB) fluxes of species A via species B $P_{AB} = \sum_{i} \max(v_{A,i}, \omega_i, \delta_B^i, 0)$ $C_{AB} = \sum_{i} \max(-v_{A,i}, \omega_i, \delta_B^i, 0)$ \mathcal{S}_B^i is unity if species B is involved in the i-th reaction and 0 otherwiseW. T. Sun, Z. Chen, X. L. Gou, Y. G. Ju: A path flux analysis method for the reduction of detailed chemical kinetic mechanisms *Combust, Flame* 157, 1298-1307 (2010)

PFA method 2

Flux ratio: share of a particular production and consumption path via species B to the total production and consumption flux of species A. The first generation flux ratios for the production and consumption of species A via species B are defined as:

$$r_{AB}^{pro-1st} = \frac{P_{AB}}{\max(P_A, C_A)}$$
$$r_{AB}^{con-1st} = \frac{C_{AB}}{\max(P_A, C_A)}$$

$$r_{\rm AB} = \max\left(r_{\rm AB}^{pro-1st}, r_{\rm AB}^{con-1st}\right)$$

Starting from the set of important species, using the relation $r_{\rm AB}$ > ε , the set of other necessary species are identified.

5 generation of consistent reduced mechanisms

Non-living species are identified and the corresponding complementary sets are determined. A living species at time t_k is formed previously from living species. Maximum values of the previous Jacobians are used for ranking the complementary sets:

$$\overline{C}_{k} = \frac{1}{n_{k}} \sum_{j \in set} \overline{B}_{j} = \frac{1}{n_{k}} \sum_{j \in set} \sum_{\substack{i: non-living \\ and selected}} \overline{\mathbf{M}}_{ij}(t_{k})^{2} = \max_{1 \le k} \overline{\mathbf{J}}_{ij}(t_{1})^{2}$$

Species belonging to the highest ranked complementary set are added to the group of selected species. This procedure is repeated, until all species become living.

6 simulations and building a database

Each generated reduced mechanism is investigated via a simulation. Reduction errors are recorded.

SEM-PCAF: PCAF with simulation error minimization

Step 1: Identification of redundant reactions

Based on the PCAF method, many reduced mechanisms are generated by trying various thresholds for eigenvalues and eigenvector elements.

Step 2: Making the reduced mechanisms to be consistent

Some of the obtained reduced mechanisms contain not-living species. Producing reactions of these species are restored. The most important producing reactions (based on F-matrix analysis) are added.

Step 3: Finding the fastest reduced mechanism with small simulation error

Simulations are carried out; errors and required CPU time are recorded. Many different reduced mechanisms may have similarly small error.

The reduced mechanism associated with the fastest simulation within a 2% margin of reduction error is selected as the best one.

Example: gas-phase chemistry in solid-oxide fuel cells the partial oxidation of methane

Solid-oxide fuel cells (SOFCs): power source for electric-driven vehicles.

Can be operated with hydrocarbon fuels. Air is added to the hydrocarbon fuel to prevent deposit formation. \Rightarrow slow partial oxidation of the hydrocarbon before reaching the anode

Dean mechanism: homogeneous gas-phase chemistry in the anode channel of natural gas fuelled SOFCs. Partial oxidation of methane up to high conversion.

Reduction is needed for **computer optimization** of fuel cell geometry and operating conditions.

252

SOFC chemistry example: comparison of the obtained reduced mechanisms at 5% maximal error

original mechanism:	345 species	6874 reactions	
DRG reduction	286 species	5637 reactions	1.34 times faster
DRGEP reduction	144 species	2482 reactions	6.18 times faster
CM reduction	139 species	2494 reactions	5.57 times faster
SEM-CM reduction	47 species	613 reactions	58.4 times faster
SEM-CM + SEM-PCA	- 47 species	297 reactions	103.0 times faster
CPU for the generatio (hh:mm:ss) DRG: SEM-	n of the reduce 00:15:00 E CM(256): 9:29	d mechanism (A)RGEP: 00:04:40 9:00 SEM-C	thlon XP 2500+ PC):) CM: 00:01:30 M(all): 18:10:00

	Summary
1.	In all current methods for the elimination of redundant species and redundant reactions from a large reaction mechanism one or few reduced mechanisms are generated. The controlling parameter of the method is not directly related to the error of reduction.
2.	New reduction philosophy: SIMULATION ERROR MINIMIZATION Thousands of candidate reduced mechanisms are generated in a guided way. The best mechanism (smallest reduction error and/or fastest simulation) is accepted.
3.	SEM-CM: guided building up of a series of consistent reduced mechanisms, starting from the important species.
4.	SEM-PCAF: optimized PCAF method for the elimination of redundant reactions
5.	SEM-CM and SEM-PCAF together are very effective for the reduction of large reaction mechanisms
	T. Nagy, T. Turányi: Reduction of very large reaction mechanisms using methods based on simulation error minimization, <i>Combust. Flame</i> , 156 , 417–428 (2009)

	Reaction lumping	
Lumping paralel reactio	on pathways	
$A + B \rightarrow C + D \qquad 4$ $A + B \rightarrow E + F \qquad 6$	4 <i>k</i> ₁ 5 <i>k</i> ₁	
Lumped reaction: A + B –	→ 0,4 C + 0,4 D + 0,6 E + 0,6 F 10 <i>k</i>	1
It generates exactly the sam Computer time is not saved	ne kinetic system of ODEs	
Reaction lumping based	d on the rate limiting step	
$A + B \rightarrow C + D$ $D + E \rightarrow F$	$v_1 = k_1 ab$ slow \leftarrow rate limiting step $v_2 = k_2 de$ fast	0
$A + B \rightarrow C + F - E$	$E v = k_1 a b$	
Less stiff ODEs, compute	er time is saved	260
		200

	Species lumping				
The matematical definitions:					
$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}t} = \mathbf{f}\big(\mathbf{Y}\big)$	Original kinetic system of ODEs, dimension of Y is <i>n</i>				
$\frac{\mathrm{d}\hat{\mathbf{Y}}}{\mathrm{d}t} = \hat{\mathbf{f}}\Big(\hat{\mathbf{Y}}\Big)$	ODE for the lumped variables dimension $n' \le n$				
$\hat{\mathbf{Y}} = \mathbf{h}(\mathbf{Y})$	Definition of lumped variables				
h linear functionh nonlinear function	⇒ linear lumping ⇒ nonlinear lumping				
identical solutions almost identical solution	\Rightarrow exact lumping is \Rightarrow approximate lumping				
Y, \hat{Y} some elements	of these two vectors are identical \Rightarrow constrained lumping	261			

Linear species lumping				
$\hat{\mathbf{Y}} = \mathbf{M}\mathbf{Y}$	New v origina	New variables are obtained by multiplying the original variable vector with a matrix		
$\mathbf{Y} = \mathbf{M}^{-1} \hat{\mathbf{Y}}$	Regai	ning the original concentrations		
Μ	Lumpi	Lumping matrix (<i>n</i> x <i>n</i> ')		
Jacobian is constant (= first order reactions only) ⇒ exact lumping is possible Jacobian is not constant ⇒ no exact lumping methods for approximate lumping do not work well				
		262	2	

 $\begin{aligned} & \text{Species lumping - a chemical approach} \\ & \text{R}_1: \quad A_1 \rightarrow L_1 \qquad r_1 = k_1 [A_1] \\ & \text{R}_2: \quad A_2 \rightarrow L_2 \qquad r_2 = k_2 [A_2] \\ & \text{R}_3: \quad L_1 \rightarrow B_1 \qquad r_3 = k_3 [L_1] \\ & \text{R}_4: \quad L_2 \rightarrow B_2 \qquad r_4 = k_4 [L_2] \end{aligned} \\ & \text{Species lumping: } [L] = [L_1] + [L_2] \end{aligned} \\ & \text{The mechanism after species lumping:} \\ & \text{R}_1: \quad A_1 \rightarrow L \qquad r_1 = k_1 [A_1] \\ & \text{R}_2: \quad A_2 \rightarrow L \qquad r_2 = k_2 [A_2] \\ & \text{R}_3: \quad L \rightarrow B_1 \qquad r_3 = k_{3m} [L] \\ & \text{R}_4: \quad L \rightarrow B_2 \qquad r_4 = k_{4m} [L] \end{aligned} \\ & \text{New rate coefficients:} \\ & \text{k}_{3m} = k_3 * [L_1]/[L] \\ & \text{k}_{4m} = k_4 * [L_2]/[L] \end{aligned}$

Th	e lumpeo	d reacti	on obta	ined	
reaction rates of the temperature \Rightarrow stoi	e parallel react chiometric coe	tions can be efficients of t	calculated a the lumped r	t a given eaction	
The obtained lumped reaction at 1000 K:					
$C_7H_{15} \rightarrow 0.17 C_2H_4 + 0.17 C_5H_{11} + 0.43 C_3H_6 + 0.43 C_4H_9 + 0.20 C_4H_8 + 0.20 C_2H_7 + 0.16 C_5H_{10} + 0.16 C_2H_5 + 0.04 C_6H_{12} + 0.04 CH_3$					
The stoichiometric coefficients of the lumped reaction change very little with changing temperature					
The stoic char	hiometric co ge very little	efficients e with char	of the lump nging temp	oed reactio erature	n
The stoic char	chiometric co ige very little 800	efficients e with chai 1000	of the lump nging temp 1200	ed reactio erature 1500	n]
The stoic char CH ₃	chiometric ccage very little8000.03	efficients e with char 1000 0.04	of the lump nging temp 1200 0.044	ed reactio erature 1500 0.045	n
The stoic char CH ₃ C ₂ H ₅	chiometric ccge very little8000.030.21	1000 0.04 0.16	of the lump nging temp 1200 0.044 0.13	Ded reactio erature 1500 0.045 0.11	
CH ₃ C ₂ H ₅ C ₃ H ₇	biometric cc age very little 800 0.03 0.21 0.18	I000 0.04 0.16 0.20	of the lump nging temp 1200 0.044 0.13 0.21	Deed reaction erature 1500 0.045 0.11 0.23	n
The stoic char CH ₃ C ₂ H ₅ C ₃ H ₇ C ₄ H ₉	biometric cc ge very little 800 0.03 0.21 0.18 0.43	I000 0.04 0.16 0.20 0.43	of the lump nging temp 1200 0.044 0.13 0.21 0.42	Deed reaction erature 1500 0.045 0.11 0.23 0.41	n

Continous lumping				
Continous species				
 species in a petroleum feedstocks, polimerisation systems very large numbers of species (several hundred thousands) can be ordered according to a chemical or physical feature (e.g. molecular weight) a feature is a continous function of the ordering variable (e.g. the melting point and the reactivity of the oligomers is a smooth function of the number of monomer units in the oligomer species.) Using probability density function (<i>pdf</i>) of the feature instead of the concentrations of the individual species 				
= the many discrete species are represented by a continuum				
The chemical reactions modify this <i>pdf.</i>				
R. Aris, G. R. Gavalas: On the theory of reactions in continuous mixtures <i>Philos. Trans. R. Soc.</i> A260 , 351-393 (1966)				
M.S. Okino, M.L. Mavrovouniotis: Simplification of mathematical models of chemical reaction systems. <i>Chem. Rev.</i> 98 , 391–408 (1998) 270				

Example: Q	SSA error at n	nethane pyrolysis
The QSSA local error o	f <mark>each</mark> species at 5	50 s
	relative error	absolute error
19. CH3	-6.200E-01 %	-2.631E-13 mole/cm**3
20. CH3CH2CH3	-5.284E-01 %	-4.568E-14 mole/cm**3
21. CH.=CHCH2CH3	5.050E-01 %	3.022E-21 mole/cm**3
22. (CH3)2C=CH.	4.889E-01 %	1.708E-19 mole/cm**3
23. C2H5	4.013E-01 %	2.989E-16 mole/cm**3
24. CH≡CCH2.	-3.385E-01 %	-4.109E-14 mole/cm**3
25. CH2=CHCH=CH2	3.062E-01 %	8.733E-13 mole/cm**3
26. CH.=CHCH3	3.030E-01 %	4.148E-18 mole/cm**3
27. С2Н3	2.612E-01 %	1.241E-16 mole/cm**3
28. CH2=CHCH2.	2.134E-01 %	1.153E-14 mole/cm**3
29. CH≡CCH3	-2.040E-01 %	-1.283E-11 mole/cm**3
30. CH2	1.591E-01 %	1.041E-20 mole/cm**3
31. C	-1.366E-01 %	-8.633E-30 mole/cm**3
32. CH2=C.CH3	1.364E-01 %	5.094E-18 mole/cm**3
33. CH2S	1.025E-01 %	5.811E-23 mole/cm**3
34. Н	7.083E-02 %	1.699E-16 mole/cm**3
35. CH2=C=CH2	-6.929E-02 %	-1.209E-12 mole/cm**3
		275

Computational Singular Perturbation (CSP)	
Assume that there are <i>M</i> fast modes in an <i>n</i> -variate dynamical system Denote Ω an (<i>n-m</i>)-dimensional manifold	
vectors \mathbf{a}_i , $i = 1,, M$ span the fast subspread vectors \mathbf{a}_i , $i = M+1,, n$ span the manifor $\mathbf{A}_r = [\mathbf{a}_1, \mathbf{a}_2,, \mathbf{a}_m]$ $\mathbf{A}_s = [\mathbf{a}_{m+1}, \mathbf{a}_{m+2},, \mathbf{a}_n]$ production rates: $\mathbf{f} = \mathbf{f}_{fast} + \mathbf{f}_{slow}$	bace old
fast directions of production rates: production rates along the surface:	$\mathbf{f}_{fast} = \mathbf{A}_{r} \mathbf{z}$ $\mathbf{f}_{slow} = \mathbf{A}_{s} \mathbf{z}$
fast amplitudes slow amplitudes Matrices A and B are orthogonal	$\mathbf{z}_{fast} = \mathbf{B}_{r} \mathbf{f}$ $\mathbf{z}_{slow} = \mathbf{B}_{s} \mathbf{f}$
S. H. Lam, D. A. Goussis: Understanding complex chemical kinetics with computational singular perturbation. <i>Proc. Combust. Inst.</i> 22 , 931-941 (1988) 280	

Repromodel from skeleton models
We have a skeleton mechanism having few species. The kinetic simulation has a natural timescale and natural time step Δt . The solutions of the ODE (calculated concentrations) are printed at every Δt times: $\mathbf{c}(t)$, $\mathbf{c}(t+\Delta t)$, $\mathbf{c}(t+2\Delta t)$, $\mathbf{c}(t+3\Delta t)$, <i>etc</i> .
Building a database from the simulation results: $\mathbf{c}(t) \rightarrow \mathbf{c}(t+\Delta t)$ $\mathbf{c}(t+\Delta t) \rightarrow \mathbf{c}(t+2\Delta t)$ $\mathbf{c}(t+2\Delta t) \rightarrow \mathbf{c}(t+3\Delta t)$
Fitting function G to the data: $c(t+\Delta t)= \mathbf{G}(c(t))$ This is a system of difference equations. Recursive application of G results in concentartion-time functions with resolution Δt
number of variables of function G = number of variables of the skeleton model Fast calculations, because the integrated solution is stored.
286

Reaction kinetics simulation codes	
WINPP/XPP Windows simulation code solving systems of ODEs, DAEs and PDEs. The user has to provide the rate equations ⇒ applicable for small syste http://www.math.pitt.edu/~bard/classes/wppdoc/readme.htm	ems only
KPP: Kinetic Preprocessor http://people.cs.vt.edu/~asandu/Software/K production of the kinetic ODE from the reaction mechanism numerical solution of stiff ODEs; sparse matrix routines	pp/
V. Damian, A. Sandu, M. Damian, F. Potra, G. R. Carmichael: The Kinetic PreProcessor KPP - A software environment for solving chemical kinetics. <i>Comp. Chem. Eng.</i> 26 , 1567-1579 (2002)	
SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Sol https://computation.llnl.gov/casc/sundials/main.html	vers
MATLAB interface to the following solvers:CVODEsolves initial value problems for ordinary differential equation (ODE) systemsCVODES solves ODE systems and includes sensitivity analysis capabilitiesARKODE solves initial value ODE problems with additive Runge-Kutta methodsIDAsolves initial value problems for differential-algebraic equation (DAE) systemsIDASsolves DAE systems and includes sensitivity analysis capabilitiesKINSOLsolves nonlinear algebraic systems.	294

CHEMKIN
Developed at the SANDIA National Laboratories, Livermore, CA, USA CHEMKIN-I (1975-1985) CHEMKIN-II (1985-1995) Simulation codes: SENKIN, PSR, PREMIX, SHOCK, EQLIB + utility programs, data bases FORTRAN codes, controlled by the input files
Kee R. J., Rupley F. M., Miller J. A. CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics SANDIA report No. SAND79-8009B
Reaction Design www.reactiondesign.com (1995-) Commertial codes; source code is not provided
Chemkin 3.x, Graphical User Interface (GUII) to CHEMKINLI
Chemkin 4.x
really new solvers, graphical interface, versatile Chemkin Pro 295
Chemkin + additional utility codes (<i>e.g.</i> pathway plotting)

CHEMKIN simulation codes www.reactiondesign.com					
CHEMKIN \rightarrow CHEMKIN -II \rightarrow CHEMKIN 3 \rightarrow CHEMKIN 4 \rightarrow CHEMKIN PRO					
CHEMKIN (1975–) CHEMKIN-II (1986–) since CHEMKIN 3 (1996–)	classified code classified code, then freeware commercial code				
CHEMKIN-II simulation codes:					
SENKIN spatially PREMIX laminar SHOCK shock tu PSR perfectly	r homogeneous reactions premixed flames ıbe simulations / stirred reactor simulations				
Options of SENKIN:					
adiabatic system, constant adiabatic system, constant adiabatic system, $V(t)$ func closed system, constant p , closed system, constant V , closed system, $p(t)$ and $T(t)$	<i>p</i> pressure <i>V</i> volume tion <i>T</i> <i>T</i>) function	296			

Alternatives to CHEMKIN	
Cantera www.cantera.org Open source code, available from SourceForge.net chemical equilibrium, homogeneous and heterogeneous kinetics reactor networks, 1D flames	
Kintecus www.kintecus.com Excel workbook; free for academic use Simulation of combustion, atmospheric chemical and biological syst	tems
 COSILAB www.softpredict.com commertial combustion simulation and mechanism analysis code visualization of reaction pathways reduction of kinetic mechanisms simulation of reactor networks two-dimensional reactors and flames spray and dust flames 	
	298

Copasi
COPASI (COmplex PAthway SImulator) http://copasi.org/
S <i>imulation</i> and <i>analysis</i> of biochemical network <i>models</i> . Free, support, but source code is not provided.
Homogeneous kinetic systems in interacting compartments Import and export of models in the SBML format (levels 1 to 3). Export of models in many format (XPP, C code, Latex).
ODE-based and stochastic simulatons
stoichiometric analysis of the reaction networks
optimization of models; parameter estimation
 IOCal Sensitivity analysis. time scale separation analysis
 characterization of non-linear dynamics properties (oscillations and chaos)
S. Hoons, S. Sahla, P. Gaugas, C. Lao, J. Pahla, N. Simus, M. Singhal, L. Yu, P. Mandas, U. Kummari

Global uncertainty analysis codes	

COPASI — a COmplex PAthway SImulator. Bioinformatics 22, 3067-3074 (2006)

GUI-HDMR http://www.gui-hdmr.de

The GUI-HDMR software is based on the RS-HDMR approach, where all component functions are approximated by orthonormal polynomials using random (or quasi-random) samples. Calculation of up to second-order global sensitivity indices based on user supplied sets of input/output data. The component functions are approximated by up to 10th order orthonormal polynomials.

T. Ziehn, A. S. Tomlin: GUI-HDMR - A software tool for global sensitivity analysis of complex models *Environmental Modelling & Software*, **24**, 775-785 (2009)

SimLab https://ec.europa.eu/jrc/en/samo/simlab

Developed at the EC Joint Research Centre (EC-JRC) in Ispra, Italy. Versions up to 2.2: GUI based nice education tool

(1) generation of random or quasi-random parameter sets

- (2) running the models (within SimLab or externally)
- (3) processing of the simulation results (FAST, Morris' and Sobol methods) visualisation of the outcome of uncertainty/sensitivity analyses.

SimLab versions from 3.0: subroutine can be called from Fortran, Python, C++, or Matlab

302

Reaction kinetics branch of the ReSpecTh web site https://respecth.hu RESPECTH HOME INDIRECT DATA DIRECT DATA RKD FILE FORMAT COMBUSTION MECHANISMS COMPUTER PROGRAMS HOW TO? 💄 **Reaction kinetics branch of ReSpecTh** The indirect experimental database consists of • 3239 data files • 4597 data series • 151829 datapoints related to hydrogen, syngas, methanol, ethanol, methane, $H_2/0_2/NOx$, ammonia and butanol combustion. The database of direct experimental and theoretical determinations of rate coefficients contains • 354 data files • 354 data series • 6684 datapoints related to hydrogen, syngas, methanol, ethanol and H₂/O₂/NOx combustion. RKD file format Computer programs Combustion mechanisms How to? This section contains the computer programs that were created in or in collaboration with the Chemical Kinetics Laboratory of ELTE. Detailed description of the ReSpecTh Kinetics Data Format. This section contains several Chemkin format reaction This section provides brief descriptions of the various tasks that can be carried out using the computer programs and experimental data published in this web site. mechanisms.

Experimental and theoretical rate determinations – Hydrogen							
RESPECTH	HOME INDIRECT DATA DIRI	ECT DATA RKD FILE FORMAT	COMBUSTION MECHANISMS	COMPUTER PROGRAMS	HOW TO?	-	
♠ RE • / DI	IRECT - / HYDROGEN -						
Direct experimental and theoretical determinations of rate coefficients							
	of hydrogen reactions						
 By ou be any on three dura mes, phease cute the appropriate offee of the following articles: Olm, C.; Zsély, I. Gy; Pálvölgyi, R.; Varga, T.; Nagy, T.; Curran, H. J.; Turányi, T. Comparison of the Performance of Several Recent Hydrogen Combustion Mechanisms. <i>Combustion and Flame</i> 2014, <i>161</i> (9), 2219–2234. https://doi.org/10.1016/j.combustiflame.2014.03.006. Varga, T.; Nagy, T.; Olm, C.; Zsély, I. G.; Palvölgyi, R.; Valkó, Ê.; Vincze, G.; Cserháti, M.; Curran, H. J.; Turányi, T. Optimization of a Hydrogen Combustion Mechanism Using Both Direct and Indirect Measurements. <i>Proceedings of the Combustion Institute</i> 2015, <i>35</i> (1), 589–596. https://doi.org/10.1016/j.procl.2014.06.071. 							
	Reaction	Number of datapoints	Number of datasets				
	H + O ₂ = O + OH	745	9				
	0 + H ₂ = H + 0H	338	11				
	OH + H ₂ = H + H ₂ O	181	7				
	H + OH + M = H ₂ O + M	6	3				
	$H + O_2 + M = HO_2 + M$	194	10				

Search in the indire	ect experim	ental databa	ase
Initial mixture	a. H2 centers 02 centers	Exact match	
experiment type any	g in color y Galence y		×
temperature or temperature range	K pressure or	r pressure range	atm 👻
ϕ or ϕ range			
Advanced search			^
Author(s)	t multiple authora, e.g.	Exact match	
Degaut (enter), Lecomfe (enter),	year or yea	r range	

Combustion mechanisms							
RESPECTH HOME INDIRECT DATA	DIRECT DATA RKD FILE FORMAT	COMBUSTION MECHANISMS	COMPUTER PROGRAMS	ноw то? 💄			
🗙 RE - / MECHANISMS -							
Collection	of detailed combust	ion mechanisms					
ELTE optimized mechanisms	Hydrogen	Syngas					
📔 4 mechanisms 🛅 2016-12-05	20 mechanisms 🛅 2013-11-2	5 📔 16 mecha	nisms 🚺 2014-06-24				
Mathematic	Etheral	. Mathema					
18 mechanisms 💼 2016-12-05	16 mechanisms 💼 2015-10	11 13 mecha	anisms 💼 2021-10-29				
H ₂ /O ₂ /NOx	NH ₃	Methanol/N	10x				
📔 18 mechanisms 🛅 2019-06-21	📔 40 mechanisms 🛅 2023-04	24 20 mecha	anisms <u> </u> 2020-08-31				
	Butanol						
	24 mechanisms 🗂 2021-06	21					

